Featured Research

from universities, journals, and other organizations

Homing in on cancer with new imaging method

Date:
March 3, 2014
Source:
University of Zurich
Summary:
There are many reasons why in the era of cutting-edge medicine it is still difficult to cure cancer. A tumor may, for instance, consist of different tumor cell subpopulations, each of which has its own profile and responds differently to therapy – or not. Furthermore, the cancer cells and the healthy cells in the body interact and communicate with one another. How a tumor then actually develops and whether metastases form depends on which signals a tumor cell receives from its environment. With the development of a new method a team of reserachers has succeeded in comprehensively profiling and visualizing tumor cells from patient samples.

Cancer is the second most common cause of death in Switzerland. There are many reasons why in the era of cutting-edge medicine it is still difficult to cure this disease. A tumor may, for instance, consist of different tumor cell subpopulations, each of which has its own profile and responds differently to therapy -- or not. Furthermore, the cancer cells and the healthy cells in the body interact and communicate with one another. How a tumor then actually develops and whether metastases form depends on which signals a tumor cell receives from its environment.

With the development of a new method the team around Prof. Bernd Bodenmiller from the Institute of Molecular Life Sciences at the University of Zurich -- in cooperation with ETH Zurich and University Hospital Zurich -- has succeeded in comprehensively profiling and visualizing tumor cells from patient samples. This promising method has now been published in Nature Methods.

New imaging method -- major opportunity

Setting out to determine a tumor's cell profile, its neighborhood relationships and the circuit structure within and in between cells is a highly complex endeavour. This is because the biomarkers, i.e. the specific molecules of the various cell types and their circuits, have to be measured in their spatial relationships. "With our method it is possible to obtain a comprehensive picture using a novel imaging technique that currently can simultaneously record 32, and in the near future more than one hundred biomarkers," explains Bernd Bodenmiller, the study coordinator. Furthermore, thanks to state-of-the-art imaging the information about the cells' neighborhood relationships is kept and their direct impact on the cellular switch and control circuits can be visualized.

The new technique is based on methods which are already routinely used in hospitals -- with two important innovations. First, the biomarkers are visualized using pure metal isotopes instead of dyes. To do so, biomarkers on very thin tissue sections are labelled with antibodies. The antibodies are coupled to the pure metal isotopes. Then tiny pieces of tissue are removed with a laser system developed by Prof. Detlef Günther from the ETH Zurich, and the metal isotopes of the pieces are measured with a mass spectrometer which can determine the mass and quantity of the individual metal isotopes. "This trick gets round the problem of the limited number of colours in the analysis of biological samples," comments Bodenmiller.

Secondly, information about the cells, and their control circuits, is no longer qualitative. With the new measurement method it is possible to precisely determine which cells experience what effect and to which extent. In this way the weak points of the control system can be pinpointed and this helps in the development of new therapeutic approaches. This is the reason, so Bodenmiller, why it is becoming increasingly important to understand these interactions for diagnosis and therapy.

Customized treatment is the goal

The initial measurement results of the new biomarker technique for breast cancer have revealed the heterogeneity of tumors. As a consequence of major growth, some tumors suffer from oxygen deficiency on the inside, other misuse the body's own immune cells to drive their growth. Cell-cell interaction and cell location in the centre or on the edges of the tumor also have a decisive influence. One thing is clear: no tumor is like any other and Bodenmiller believes that treatment should reflect this. In a next step his research team wishes to use the new measurement method to explore the roles played by control circuits and cell communication in metastasis formation.


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Charlotte Giesen, Hao A O Wang, Denis Schapiro, Nevena Zivanovic, Andrea Jacobs, Bodo Hattendorf, Peter J Schüffler, Daniel Grolimund, Joachim M Buhmann, Simone Brandt, Zsuzsanna Varga, Peter J Wild, Detlef Günther, Bernd Bodenmiller. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature Methods, 2014; DOI: 10.1038/nmeth.2869

Cite This Page:

University of Zurich. "Homing in on cancer with new imaging method." ScienceDaily. ScienceDaily, 3 March 2014. <www.sciencedaily.com/releases/2014/03/140303083555.htm>.
University of Zurich. (2014, March 3). Homing in on cancer with new imaging method. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/03/140303083555.htm
University of Zurich. "Homing in on cancer with new imaging method." ScienceDaily. www.sciencedaily.com/releases/2014/03/140303083555.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) — Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) — A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) — More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins