Featured Research

from universities, journals, and other organizations

Research benefits surgeons making decisions on how to help their patients breathe easier

Date:
March 4, 2014
Source:
University of Cincinnati
Summary:
Computer simulations have been developed for aircraft design to improve treatment of human airways. Computational Fluid Dynamics, or CFD, uses computer algorithms to solve the flow of air or fluids for various applications. These algorithms are typically applied toward the design of aircraft. While designing an aircraft, CFD is often considered both an accurate and less expensive approach before investing in building models and testing in air tunnels. But over the past decade or so, the application of CFD to biological flows to study medically-related problems, including respiratory disorders has gained a great deal of interest. The computer simulations traditionally used for aircraft design found use in treating health conditions such as cystic fibrosis, asthma, sleep apnea and snoring.

Goutham Mylavarapu, left, and Ephraim Gutmark.
Credit: Image courtesy of University of Cincinnati

A more accurate and successful, yet complex approach used in designing an airplane is now taking off in the health care industry. The end result is helping patients with pulmonary disorders breathe easier, as well as their surgeons in considering novel treatment approaches.

Related Articles


Goutham Mylavarapu, a senior research associate in the University of Cincinnati Department of Aerospace Engineering, and Ephraim Gutmark, Ohio Eminent Scholar and UC distinguished professor of aerospace engineering and engineering mechanics, will present their research involving Computational Fluid Dynamics at the 39th American Institute of Aeronautics and Astronautics (AIAA) Dayton-Cincinnati Aerospace Sciences Symposium. The symposium takes place on Wednesday, March 5, in Dayton, Ohio.

Computational Fluid Dynamics, or CFD, uses computer algorithms to solve the flow of air or fluids for various applications. These algorithms are typically applied toward the design of aircraft as they quantify the contribution of airflow to flight requirements. While designing an aircraft, CFD is often considered both an accurate and less expensive approach before investing in building models and testing in air tunnels.

But over the past decade or so, the application of CFD to biological flows to study medically-related problems, including respiratory disorders has gained a great deal of interest. The computer simulations traditionally used for aircraft design found use in treating health conditions such as cystic fibrosis, asthma, sleep apnea and snoring.

The respiratory tract is a pathway of hard and soft structures that take in and push out airflow. Mylavarapu explains that a number of pulmonary upper airway disorders are associated with the vibration and/or deformation of the soft structures around the airway, leading to partial or complete collapse of the airway, as in the case of sleep apnea. In the more severe cases, these airway obstructions or deformations significantly impact quality of life and can even lead to death.

The researchers are using CFD simulations -- the most commonly used in the aerospace industry -- on actual medical data from patients with breathing disorders. Applying the equations to analyze the information they're seeing in an MRI can provide surgeons with a better idea on how to treat the problem, increasing the success of any surgical approach as well as reducing the number of surgeries (and therefore a better recovery and less of a medical expense) for the patient.

"Historically, the evaluation of a patient's airway is limited to clinical diagnosis with medical imaging," explains Mylavarapu. "But the variability and complexity in the airway anatomy can limit the success rate of surgery. CFD provides a better understanding of respiratory flow and enables individualized treatment when applied to what we're seeing with medical imaging."

"Surgery is sometimes based on experience-based intuition, and it's not always guaranteed that the end result will be effective," says Gutmark. "CFD is another tool to provide surgeons with more quantitative information about the possible outcome during the planning of a surgical procedure."


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Research benefits surgeons making decisions on how to help their patients breathe easier." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304125933.htm>.
University of Cincinnati. (2014, March 4). Research benefits surgeons making decisions on how to help their patients breathe easier. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/03/140304125933.htm
University of Cincinnati. "Research benefits surgeons making decisions on how to help their patients breathe easier." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304125933.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins