Featured Research

from universities, journals, and other organizations

Novel quantum dot laser paves the way for lower-cost photonics

Date:
March 4, 2014
Source:
The Optical Society
Summary:
With the explosive growth of bandwidth demand in telecommunications networks, experts are continually seeking new ways to transmit increasingly large amounts of data in the quickest and cheapest ways possible. Photonic devices -- which convert light to electricity and vice versa -- offer an energy-efficient alternative to traditional copper network links for information transmission. Unfortunately, these devices are also almost always prohibitively pricey.

This is an optical micrograph of the fabricated laser devices.
Credit: Alan Liu

With the explosive growth of bandwidth demand in telecommunications networks, experts are continually seeking new ways to transmit increasingly large amounts of data in the quickest and cheapest ways possible. Photonic devices -- which convert light to electricity and vice versa -- offer an energy-efficient alternative to traditional copper network links for information transmission. Unfortunately, these devices are also almost always prohibitively pricey.

Related Articles


One way to bring those costs down is to make photonics compatible with the existing silicon microelectronics industry. A promising way to do that is by growing "quantum dot" lasers directly on silicon substrates, according to graduate student Alan Y. Liu of the University of California at Santa Barbara (UCSB) and his colleagues, who include UCSB professors John E. Bowers and Arthur C. Gossard. Although such quantum dot lasers have been grown on silicon before, their performance has not equaled that of quantum dot lasers grown on their native substrates, which are platforms made of similar materials as the quantum dot lasers themselves.

Now Liu and his collaborators in Bowers and Gossard's groups have demonstrated a novel quantum dot laser that not only is grown on silicon but that performs as well as similar lasers grown on their native substrates. The team will discuss its record-breaking results achieved using such lasers at this year's OFC Conference and Exposition, being held March 9-13 in San Francisco, Calif., USA.

The researchers believe the work is an important step towards large-scale photonic integration in an ultra low-cost platform.

Currently, so-called "quantum well" lasers are used for data transmission. They consist of nanometers-thick layers of light-emitting material, representing the quantum well, sandwiched between other materials that serve to guide both the injected electrical current as well as the output light. A quantum dot laser is similar in design, but the sheets of quantum well materials are replaced with a high density of smaller dots, each a few nanometers high and tens of nanometers across. To put it in perspective, 50 billion of them would fit onto one side of a penny.

"Quantum wells are continuous in two dimensions, so imperfections in one part of the well can affect the entire layer. Quantum dots, however, are independent of each other, and as such they are less sensitive to the crystal imperfections resulting from the growth of laser material on silicon," Liu said.

"Because of this, we can grow these lasers on larger and cheaper silicon substrates. And because of their small size," Liu added, "they require less power to operate than quantum well lasers while outputting more light, so they would enable low-cost silicon photonics."

In their new work, the team grew quantum dots directly on silicon substrates using a technique known as molecular beam epitaxy, or MBE ("epitaxy" refers to the process of growing one crystal on top of another, with the orientation of the top layer determined by that of the bottom).

"The major advantage of epitaxial growth is that it enables us to exploit the existing economies of scale for silicon, which would drive down cost," Liu said. He added that "MBE is the best method for creating high-quality quantum dots that are suitable for use in lasers" and that "the entire laser can be grown continuously in a single run, which minimizes potential contamination."


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Cite This Page:

The Optical Society. "Novel quantum dot laser paves the way for lower-cost photonics." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304130031.htm>.
The Optical Society. (2014, March 4). Novel quantum dot laser paves the way for lower-cost photonics. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2014/03/140304130031.htm
The Optical Society. "Novel quantum dot laser paves the way for lower-cost photonics." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304130031.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins