Featured Research

from universities, journals, and other organizations

Motion-sensing cells in eye let brain 'know' about directional changes

Date:
March 4, 2014
Source:
University of California - San Diego
Summary:
How do we "know" from the movements of speeding car in our field of view if it's coming straight toward us or more likely to move to the right or left? In a detailed study of the neurons linking the eyes and brains of mice, biologists discovered that the ability of our brains and those of other mammals to figure out and process in our brains directional movements is a result of the activation in the cortex of signals that originate from the direction-sensing cells in the retina of our eyes.

The discovery of the link between direction-sensing cells in the retina and the cortex has a number of practical implications for neuroscientists who treat disabilities in motion processing, such as dysgraphia, a condition sometimes associated with dyslexia that affects direction-oriented skills.
Credit: Andrew Huberman, UC San Diego

How do we "know" from the movements of speeding car in our field of view if it's coming straight toward us or more likely to move to the right or left?

Related Articles


Scientists have long known that our perceptions of the outside world are processed in our cortex, the six-layered structure in the outer part of our brains. But how much of that processing actually happens in cortex? Do the eyes tell the brain a lot or a little about the content of the outside world and the objects moving within it?

In a detailed study of the neurons linking the eyes and brains of mice, biologists at UC San Diego discovered that the ability of our brains and those of other mammals to figure out and process in our brains directional movements is a result of the activation in the cortex of signals that originate from the direction-sensing cells in the retina of our eyes.

"Even though direction-sensing cells in the retina have been known about for half a century, what they actually do has been a mystery- mostly because no one knew how to follow their connections deep into the brain," said Andrew Huberman, an assistant professor of neurobiology, neurosciences and ophthalmology at UC San Diego, who headed the research team, which also involved biologists at the Salk Institute for Biological Sciences. "Our study provides the first direct link between direction-sensing cells in the retina and the cortex and thereby raises the new idea that we 'know' which direction things are moving specifically because of the activation of these direction-selective retinal neurons." The study, recently published online, will appear in the March 20 print issue of Nature.

The discovery of the link between direction-sensing cells in the retina and the cortex has a number of practical implications for neuroscientists who treat disabilities in motion processing, such as dysgraphia, a condition sometimes associated with dyslexia that affects direction-oriented skills.

"Understanding the cells and neural circuits involved in sensing directional motion may someday help us understand defects in motion processing, such as those involved dyslexia, and it may inform strategies to treat or even re-wire these circuits in response to injury or common neurodegenerative diseases, such as glaucoma or Alzheimer's," said Huberman.

He and his team discovered the link in mice by using new types of modified rabies viruses that were pioneered by Ed Callaway, a professor at the Salk Institute, and by imaging the activity of neurons deep in the brain during visual experience.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Kim McDonald. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alberto Cruz-Martνn, Rana N. El-Danaf, Fumitaka Osakada, Balaji Sriram, Onkar S. Dhande, Phong L. Nguyen, Edward M. Callaway, Anirvan Ghosh, Andrew D. Huberman. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature, 2014; DOI: 10.1038/nature12989

Cite This Page:

University of California - San Diego. "Motion-sensing cells in eye let brain 'know' about directional changes." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304130039.htm>.
University of California - San Diego. (2014, March 4). Motion-sensing cells in eye let brain 'know' about directional changes. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/03/140304130039.htm
University of California - San Diego. "Motion-sensing cells in eye let brain 'know' about directional changes." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304130039.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) — Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins