Featured Research

from universities, journals, and other organizations

First light for MUSE: Powerful 3-D spectrograph successfully installed on Very Large Telescope

Date:
March 5, 2014
Source:
ESO
Summary:
A new innovative instrument called MUSE (Multi Unit Spectroscopic Explorer) has been successfully installed on ESO's Very Large Telescope at the Paranal Observatory in northern Chile. MUSE has observed distant galaxies, bright stars and other test targets during the first period of very successful observations.

This view shows how the new MUSE instrument on ESO's Very Large Telescope gives a innovative three-dimensional depiction of a distant galaxy. For each part of the galaxy the light has been split up into its component colours -- revealing not only the motions of different parts of the galaxy but also clues to its chemical composition and other properties. During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies. This picture is based on data on the polar ring galaxy NGC 4650A that were obtained soon after the instrument achieved first light in early 2014.
Credit: ESO/MUSE consortium/R. Bacon/L. Calçada

Following testing and preliminary acceptance in Europe in September 2013, MUSE was shipped to ESO's Paranal Observatory in Chile. It was reassembled at the base camp before being carefully transported to its new home at the VLT, where it is now installed on Unit Telescope 4. MUSE is the latest of the second generation instruments for the VLT (the first two were X-shooter and KMOS and the next, SPHERE, will follow shortly).

The leader of the team and principal investigator for the instrument, Roland Bacon (Centre de Recherche Astrophysique de Lyon, France), expressed his feelings: "It has taken a lot of work by many people over many years, but we have done it! It seems strange that this seven-tonne collection of optics, mechanics and electronics is now a fantastic time machine for probing the early Universe. We are very proud of the achievement -- MUSE will remain a unique instrument for years to come."

MUSE's science goals include delving into the early epochs of the Universe to probe the mechanisms of galaxy formation and studying both the motions of material in nearby galaxies and their chemical properties. It will have many other applications, ranging all the way from studies of the planets and satellites in the Solar System, through the properties of star-forming regions in the Milky Way and out to the distant Universe.

As a unique and powerful tool for discovery MUSE uses 24 spectrographs to separate light into its component colours to create both images and spectra of selected regions of the sky. It creates 3D views of the Universe with a spectrum for each pixel as the third dimension.* During the subsequent analysis the astronomer can move through the data and study different views of the object at different wavelengths, just like tuning a television to different channels at different frequencies.

MUSE couples the discovery potential of an imaging device with the measuring capabilities of a spectrograph, while taking advantage of the much better image sharpness provided by adaptive optics. The instrument is mounted on Unit Telescope 4 of the VLT, which is currently being converted into a fully adaptive telescope.

MUSE is the result of ten years of design and development by the MUSE consortium -- headed by the Centre de Recherche Astrophysique de Lyon, France and the partner institutes Leibniz-Institut für Astrophysik Potsdam (AIP, Germany), Institut für Astrophysik Göttingen (IAG, Germany), Institute for Astronomy ETH Zurich (Switzerland), L'Institut de Recherche en Astrophysique et Planétologie (IRAP, France), Nederlandse Onderzoekschool voor de Astronomie (NOVA, the Netherlands) and ESO.

Since the start of 2014, Bacon and the rest of the MUSE integration and commissioning team at Paranal have recorded the MUSE story in a series of blog posts which can be followed here. The team will present the first results from MUSE at the forthcoming 3D2014 workshop at ESO in Garching bei München, Germany.

"A muse is there to inspire. Indeed, MUSE has inspired us for many years and will continue to do so," says Bacon in a blog post on the first light. "No doubt many astronomers from all over the world will alsobe charmed by our MUSE."

Notes

* This technique, known as integral field spectroscopy, allows astronomers to simultaneously study the properties of different parts of an object such as a galaxy to see how it is rotating and to measure its mass. It also allows the chemical composition and other physical properties to be determined in different parts of the object. The technique has been used for many years but has now with MUSE reached a leap in sensitivity, efficiency and resolution. One way of describing this, is that MUSE simultaneously combines high-resolution imaging with spectroscopy.


Story Source:

The above story is based on materials provided by ESO. Note: Materials may be edited for content and length.


Cite This Page:

ESO. "First light for MUSE: Powerful 3-D spectrograph successfully installed on Very Large Telescope." ScienceDaily. ScienceDaily, 5 March 2014. <www.sciencedaily.com/releases/2014/03/140305084844.htm>.
ESO. (2014, March 5). First light for MUSE: Powerful 3-D spectrograph successfully installed on Very Large Telescope. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2014/03/140305084844.htm
ESO. "First light for MUSE: Powerful 3-D spectrograph successfully installed on Very Large Telescope." ScienceDaily. www.sciencedaily.com/releases/2014/03/140305084844.htm (accessed July 30, 2014).

Share This




More Space & Time News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) — NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) — Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) — One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins