Featured Research

from universities, journals, and other organizations

Unique individual with lupus and HIV demonstrates desired immune response to HIV

Date:
March 10, 2014
Source:
Duke Medicine
Summary:
One person’s unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to new findings. The person had a rare combination of both lupus and HIV. Lupus, specifically systemic lupus erythematosus, or SLE, is a disease in which the immune system attacks the body's cells and tissue.

One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

The person had a rare combination of both lupus and HIV. Lupus, specifically systemic lupus erythematosus, or SLE, is a disease in which the immune system attacks the body's cells and tissue.

In an analysis published March 10, 2014, in the Journal of Clinical Investigation, the Duke-led research team detailed how the individual's immune system made a desired type of neutralizing antibodies that is considered essential to an effective vaccine response.

"Over the years we have searched for and now have found one person with SLE who was also chronically infected with HIV to determine if this person could make broad neutralizing antibodies," said Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute and senior author of the study. "We found that the patient did indeed make these important antibodies, and by determining how this immune response occurred, we have enhanced our understanding of the process involved."

Haynes said a huge barrier to creating an effective HIV vaccine has been the difficulty in eliciting the broad neutralizing antibody response. These antibodies arise in a few people infected with HIV, but it takes at least two years.

In 2005, Haynes found that some broad neutralizing antibodies to HIV cross-reacted with the body's tissues in a process termed autoreactivity. Autoreactive antibodies are kept in check by the body's immune tolerance controls, which sense antibodies that react with the body and prevent them from being made.

Haynes's hypothesis has been that these autoreactive broad neutralizing antibodies are not routinely made because the immune system targets them as harmful and keeps them in check. In essence, the virus has found a unique escape mechanism from neutralizing antibodies by adapting itself to look like the body's tissues.

In an autoimmune disease such as lupus, the immune tolerance controls are defective, so the broad neutralizing antibodies should be produced, the Duke team reasoned.

Haynes and colleagues, including lead author Mattia Bonsignori, M.D., assistant professor of medicine at Duke, identified an individual with both lupus and HIV and found that, after several years, the person made the desired broad neutralizing antibodies.

Remarkably, the broad neutralizing antibody found in the lupus individual was autoreactive, and reacted with similar molecules in the body called double stranded DNA, or dsDNA, that are made in individuals with lupus who do not have HIV.

"The cross-reactivity of the broad neutralizing antibody with dsDNA was very surprising and provided support for the hypothesis that broad neutralizing antibodies are similar to the autoantibodies that arise in lupus patients who are not infected with HIV," Bonsignori said.

The findings in no way suggest that individuals with lupus are immune to HIV, and they, like all individuals, should protect themselves from contracting the virus. Rather, it suggests that when individuals with lupus do become infected with HIV, they can eventually make broad neutralizing antibodies, although unfortunately too late to help them fight off the infection.

"Our study of this person with SLE and HIV has been critically instrumental in our understanding of the unusual biology of the remarkable host control of antibody responses to the conserved broad neutralizing sites of the HIV envelope," Bonsignori said. "We are hopeful that these insights in lupus will aid in our implementation of strategies for designing experimental vaccines capable of overcoming the host tolerance control of broad neutralizing antibodies."

In addition to Haynes and Bonsignori, study authors from Duke include Kevin Wiehe, Guang Yang, Daniel M. Kozink, Florence Perrin, Abby J. Cooper, Kwan-Ki Hwang, Xi Chen, Mengfei Liu, Robert J. Parks, Joshua Eudailey, Minyue Wang, Megan Clowse, Lisa G. Criscione-Schreiber, M. Anthony Moody, Feng Gao, Garnett Kelsoe, Laurent Verkoczy, Georgia D. Tomaras, Hua-Xin Liao, and David C. Montefiori. Other authors include Sabastian K. Grimm and Margaret E. Ackerman from Dartmouth College; Rebecca Lynch, Krisha McKee and John R. Mascola from the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases; and Scott D. Boyd of Stanford University.

The National Institute of Allergy and Infectious Diseases funded the study (AI067854 and AI100645).


Story Source:

The above story is based on materials provided by Duke Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mattia Bonsignori, Kevin Wiehe, Sebastian K. Grimm, Rebecca Lynch, Guang Yang, Daniel M. Kozink, Florence Perrin, Abby J. Cooper, Kwan-Ki Hwang, Xi Chen, Mengfei Liu, Krisha McKee, Robert J. Parks, Joshua Eudailey, Minyue Wang, Megan Clowse, Lisa G. Criscione-Schreiber, M. Anthony Moody, Margaret E. Ackerman, Scott D. Boyd, Feng Gao, Garnett Kelsoe, Laurent Verkoczy, Georgia D. Tomaras, Hua-Xin Liao, Thomas B. Kepler, David C. Montefiori, John R. Mascola, Barton F. Haynes. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014; DOI: 10.1172/JCI73441

Cite This Page:

Duke Medicine. "Unique individual with lupus and HIV demonstrates desired immune response to HIV." ScienceDaily. ScienceDaily, 10 March 2014. <www.sciencedaily.com/releases/2014/03/140310182542.htm>.
Duke Medicine. (2014, March 10). Unique individual with lupus and HIV demonstrates desired immune response to HIV. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/03/140310182542.htm
Duke Medicine. "Unique individual with lupus and HIV demonstrates desired immune response to HIV." ScienceDaily. www.sciencedaily.com/releases/2014/03/140310182542.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins