Featured Research

from universities, journals, and other organizations

Novel magnetism discovered in iridium compound CuIr2S4

Date:
March 12, 2014
Source:
National Institute for Materials Science
Summary:
Researchers have discovered the first experimental evidence showing the importance of spin-orbit interactions that were previously overlooked in CuIr2S4. It opens up a new area of research with respect to spin-orbit interactions in transition metals.

Researchers have discovered the first experimental evidence showing the importance of spin-orbit interactions that were previously overlooked in CuIr2S4. It opens up a new area of research with respect to spin-orbit interactions in transition metals.

Related Articles


The research unit that includes Associate Professor Kenji Kojima and Professor Ryosuke Kadono of the Institute of Materials Structure Science, KEK, investigated the magnetic properties of the iridium compound Cu1-xZnxIr2S4 using the muon spin rotation method. This was undertaken in collaboration with Principal Researcher Hiroyuki Suzuki and Unit Director Hideaki Kitazawa of the Advanced Key Technologies Division, NIMS.

The researchers found that the host material with zero zinc concentration, (x = 0) CuIr2S4, is not nonmagnetic as previously believed, but shows novel magnetism below ~ 100 K, and that this magnetism state rapidly disappears when slight amounts of zinc (x ~ 0.01) are substituted.

The iridium compound that was investigated, CuIr2S4, comprises a spinel structure and is metallic at room temperature, but it becomes an insulator below 230 K.

Previous structural analysis has showed that, upon becoming an insulator, iridium separates into tetravalent and trivalent ions, each forming octamers. Moreover, one type of bond between tetravalent octamer iridium (green, blue, and red lines in Fig. 1) becomes shorter than the others, and pairs of iridium at both sides of these bonds form four independent pairs.

Such structural changes have been confirmed in samples synthesized by the NIMS group through structural analysis using synchrotron X-rays from the KEK Photon Factory.

Research into the magnetic properties of the iridium compound CuIr2S4 using muon spin rotation at J-PARC and TRIUMF (Canada) found an inhomogeneous internal magnetic field below ~ 100 K that is considered to be induced by the magnetic moments of iridium.

Spin glass is one class of magnetic materials that illustrates such magnetism. Previously, CuIr2S4 was believed to have pairs of electron spin when tetrahedra distort in one direction at low temperature, and that this spin singlet state removes magnetic frustration; however, the results presented here reject this hypothesis.

The team also found that substitution of copper with zinc (Cu1-xZnxIr2S4) results in a sudden loss of magnetism in iridium at x ~ 0.01 (1%). Superconductivity is known to appear at x greater than ~ 0.25 in this material, so the relation between magnetism found in this research and superconductivity attracts much interest. As a result, CuIr2S4 is expected to provide a new line of research, different from Sr2IrO4, that further considers the effect of spin-orbit interaction in transition metals.

The discovery in this research is the first experimental evidence concerning the importance of spin-orbit interactions that were previously overlooked in CuIr2S4 and also shows that this material opens up a new area of research with respect to spin-orbit interactions in transition metals. The results were published in the online version of the journal Physical Review Letters.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Materials Science. "Novel magnetism discovered in iridium compound CuIr2S4." ScienceDaily. ScienceDaily, 12 March 2014. <www.sciencedaily.com/releases/2014/03/140312103040.htm>.
National Institute for Materials Science. (2014, March 12). Novel magnetism discovered in iridium compound CuIr2S4. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/03/140312103040.htm
National Institute for Materials Science. "Novel magnetism discovered in iridium compound CuIr2S4." ScienceDaily. www.sciencedaily.com/releases/2014/03/140312103040.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins