Featured Research

from universities, journals, and other organizations

Harnessing everyday motion to power mobile devices

Date:
March 16, 2014
Source:
American Chemical Society (ACS)
Summary:
Imagine powering your cell phone by simply walking around your office or rubbing it with the palm of your hand. Rather than plugging it into the wall, you become the power source. Scientists were recently working on a miniature generator based on an energy phenomenon called the piezoelectric effect, which is electricity resulting from pressure. To their surprise, it produced more power than expected.

Sliding two materials together generates enough electricity to power a row of LEDs.
Credit: Georgia Tech

Imagine powering your cell phone by simply walking around your office or rubbing it with the palm of your hand. Rather than plugging it into the wall, you become the power source. Researchers at the 247th National Meeting & Exposition of the American Chemical Society (ACS) presented these commercial possibilities and a unique vision for green energy.

The meeting, attended by thousands of scientists, features more than 10,000 reports on new advances in science and other topics. It is being held at the Dallas Convention Center and area hotels through Thursday.

Zhong Lin Wang, Ph.D., and his team, including graduate student Long Lin who presented the work, have set out to transform the way we look at mechanical energy. Conventional energy sources have so far relied on century-old science that requires scattered, costly power plants and a grid to distribute electricity far and wide.

"Today, coal, natural gas and nuclear power plants all use turbine-engine driven, electromagnetic-induction generators," Wang explained. "For a hundred years, this has been the only way to convert mechanical energy into electricity."

But a couple of years ago, Wang's team at the Georgia Institute of Technology was working on a miniature generator based on an energy phenomenon called the piezoelectric effect, which is electricity resulting from pressure. But to their surprise, it produced more power than expected. They investigated what caused the spike and discovered that two polymer surfaces in the device had rubbed together, producing what's called a triboelectric effect -- essentially what most of us know as static electricity.

Building on that fortuitous discovery, Wang then developed the first triboelectric nanogenerator, or "TENG." He paired two sheets of different materials together -- one donates electrons, and the other accepts them. When the sheets touch, electrons flow from one to the other. When the sheets are separated, a voltage develops between them.

Since his lab's first publication on TENG in 2012, they have since boosted the power output density by a factor of 100,000, with the output power density reaching 300 Watts per square meter. Now with one stomp of his foot, Wang can light up a sheet with a thousand LED bulbs.

His group has incorporated TENG into shoe insoles, whistles, foot pedals, floor mats, backpacks and ocean buoys for a variety of potential applications. These gadgets harness the power of everyday motion from the minute (think vibrations, rubbing, stepping) to the global and endless (waves). These movements produce mechanical energy that has been around us all along, but scientists didn't know how to convert it directly to usable power in a sustainable way until now.

The key to the huge leap in output and future improvements is the chemistry.

"The amount of charge transferred depends on surface properties," Wang explained. "Making patterns of nanomaterials on the polymer films' surfaces increases the contact area between the sheets and can make a 1,000-fold difference in the power generated."

With those improvements, Wang said his group is now working on commercializing products to recharge cell phones and other mobile devices using TENG. Down the road, he envisions these nanogenerators can make a far bigger impact on a much larger scale. Researchers could use the technology to tap into the endless energy of ocean waves, rain drops and the wind all around us -- with tiny generators rather than towering turbines -- to help feed the world's ever-growing energy demand, he said.

Wang acknowledges funding from the National Science Foundation, the U.S. Department of Energy, the National Institute for Materials in Japan, Samsung and the Chinese Academy of Sciences.

To see a video of the team's work, visit http://www.youtube.com/watch?v=AVhJ4G-7na4.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "Harnessing everyday motion to power mobile devices." ScienceDaily. ScienceDaily, 16 March 2014. <www.sciencedaily.com/releases/2014/03/140316102707.htm>.
American Chemical Society (ACS). (2014, March 16). Harnessing everyday motion to power mobile devices. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/03/140316102707.htm
American Chemical Society (ACS). "Harnessing everyday motion to power mobile devices." ScienceDaily. www.sciencedaily.com/releases/2014/03/140316102707.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins