Featured Research

from universities, journals, and other organizations

New therapeutic target discovered for Alzheimer's disease

Date:
March 17, 2014
Source:
University of California, San Diego Health Sciences
Summary:
A team of scientists report that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocks creation of key neurotoxic pGlu-Abeta peptides linked to Alzheimer's disease (AD). Moreover, the candidate inhibitor drug has been shown to be safe in humans.

A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocks creation of key neurotoxic pGlu-Aβ peptides linked to Alzheimer's disease (AD). Moreover, the candidate inhibitor drug has been shown to be safe in humans.

Related Articles


The findings, based on AD mouse models and published online in the Journal of Alzheimer's Disease, support continued development of cysteine protease inhibitors as a new drug target class for AD. "No other therapeutic program is investigating cysteine protease inhibitors for treating AD," said principal investigator Vivian Hook, PhD, professor in the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and in the UC San Diego School of Medicine.

Current AD drugs treat some symptoms of the devastating neurological disorder, but none actually slow its progress, prevent or cure it. No new AD drug has been approved in more than a decade.

The researchers focused on cathepsin B production of N-truncated pGlu-Aβ, a peptide or short chain of amino acids, and the blockade of cathepsin B by E64d, a compound shown to inhibit cysteine proteases, a type of enzyme. AD is characterized by accumulation of a variety of Aβ peptides as oligomers and amyloid plaques in the brain, factors involved in neuronal loss and memory deficits over time. These neurotoxic Aβ peptides are created when enzymes cleave a large protein called amyloid precursor protein (APP) into smaller Aβ peptides of varying toxicity. N-truncated pGlu-Aβ has been shown to be among the most neurotoxic of multiple forms of Aβ peptides.

Much AD research has focused on the APP-cutting enzyme BACE1 β-secretase, but its role in producing pGlu-Aβ was unknown. Cathepsin B is an alternative -secretase which cleaves the wild-type β-secretase site of APP, which is expressed in the major sporadic and many familial forms of AD. Hook and colleagues looked at what happened after gene knockout of BACE1 or cathepsin B. They found that cathepsin B, but not BACE1, produced the highly toxic pGlu-Aβ.

Perhaps most interestingly, the scientists found that E64d, an enzyme inhibitor of cathepsin B, reduced production of pGlu-Aβ and other AD-associated Aβ peptides. Key was the finding that E64d and cathepsin B gene knock out resulted in improved memory deficits in a mouse model of AD.

"This is an exciting finding," said Hook. "It addresses a new target -- cathepsin B -- and an effective, safe small molecule, E64d, to reduce the pGlu-Aβ that initiates development of the disease's neurotoxicity. No other work in the field has addressed protease inhibition for reducing pGlu-Aβ of AD."

Hook noted that E64d has already been shown to be safe in clinical trials of patients with muscular dystrophy and would, therefore, likely prove safe for treating AD as well. She hopes to launch Phase 1 human clinical trials in the near future with a modified version of the drug candidate.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of California, San Diego Health Sciences. "New therapeutic target discovered for Alzheimer's disease." ScienceDaily. ScienceDaily, 17 March 2014. <www.sciencedaily.com/releases/2014/03/140317155207.htm>.
University of California, San Diego Health Sciences. (2014, March 17). New therapeutic target discovered for Alzheimer's disease. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2014/03/140317155207.htm
University of California, San Diego Health Sciences. "New therapeutic target discovered for Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2014/03/140317155207.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins