Featured Research

from universities, journals, and other organizations

Stem cell combination therapy improves traumatic brain injury outcomes

Date:
March 20, 2014
Source:
University of South Florida (USF Innovation)
Summary:
A combination stem cell therapy utilizing umbilical cord cell and growth factor treatment improves traumatic brain injury outcomes in animal models and could offer hope for millions, including US war veterans with traumatic brain injuries, new research shows. The researchers concluded that additional studies of this combination therapy are warranted in order to better understand their modes of action.

“Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism,” said study lead author Cesar V. Borlongan, PhD.
Credit: Image courtesy of University of South Florida (USF Innovation)

Traumatic brain injuries (TBI), sustained by close to 2 million Americans annually, including military personnel, are debilitating and devastating for patients and their families. Regardless of severity, those with TBI can suffer a range of motor, behavioral, intellectual and cognitive disabilities over the short or long term. Sadly, clinical treatments for TBI are few and largely ineffective.

Related Articles


In an effort to find an effective therapy, neuroscientists at the Center of Excellence for Aging and Brain Repair, Department of Neurosurgery in the USF Health Morsani College of Medicine, University of South Florida, have conducted several preclinical studies aimed at finding combination therapies to improve TBI outcomes.

In their study of several different therapies -- alone and in combination -- applied to laboratory rats modeled with TBI, USF researchers found that a combination of human umbilical cord blood cells (hUBCs) and granulocyte colony stimulating factor (G-CSF), a growth factor, was more therapeutic than either administered alone, or each with saline, or saline alone.

The study appeared in a recent issue of PLoS ONE.

"Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism," said study lead author Cesar V. Borlongan, PhD, professor of neurosurgery and director of USF's Center of Excellence for Aging and Brain Repair. "In our study, we used hUBCs and G-CSF alone and in combination. In previous studies, hUBCs have been shown to suppress inflammation, and G-CSF is currently being investigated as a potential therapeutic agent for patients with stroke or Alzheimer's disease."

Their stand-alone effects have a therapeutic potential for TBI, based on results from previous studies. For example, G-CSF has shown an ability to mobilize stem cells from bone marrow and then infiltrate injured tissues, promoting self-repair of neural cells, while hUBCs have been shown to suppress inflammation and promote cell growth.

The involvement of the immune system in the central nervous system to either stimulate repair or enhance molecular damage has been recognized as key to the progression of many neurological disorders, including TBI, as well as in neurodegenerative diseases such as Parkinson's disease, multiple sclerosis and some autoimmune diseases, the researchers report. Increased expression of MHCII positive cells -- cell members that secrete a family of molecules mediating interactions between the immune system's white blood cells -- has been directly linked to neurodegeneration and cognitive decline in TBI.

"Our results showed that the combined therapy of hUBCs and G-CSF significantly reduced the TBI-induced loss of neuronal cells in the hippocampus," said Borlongan. "Therapy with hUBCs and G-CSF alone or in combination produced beneficial results in animals with experimental TBI. G-CSF alone produced only short-lived benefits, while hUBCs alone afforded more robust and stable improvements. However, their combination offered the best motor improvement in the laboratory animals."

"This outcome may indicate that the stem cells had more widespread biological action than the drug therapy," said Paul R. Sanberg, distinguished professor at USF and principal investigator of the Department of Defense funded project. "Regardless, their combination had an apparent synergistic effect and resulted in the most effective amelioration of TBI-induced behavioral deficits."

The researchers concluded that additional studies of this combination therapy are warranted in order to better understand their modes of action. While this research focused on motor improvements, they suggested that future combination therapy research should also include analysis of cognitive improvement in the laboratory animals modeled with TBI.


Story Source:

The above story is based on materials provided by University of South Florida (USF Innovation). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sandra A. Acosta, Naoki Tajiri, Kazutaka Shinozuka, Hiroto Ishikawa, Paul R. Sanberg, Juan Sanchez-Ramos, Shijie Song, Yuji Kaneko, Cesar V. Borlongan. Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic Traumatic Brain Injury. PLoS ONE, 2014; 9 (3): e90953 DOI: 10.1371/journal.pone.0090953

Cite This Page:

University of South Florida (USF Innovation). "Stem cell combination therapy improves traumatic brain injury outcomes." ScienceDaily. ScienceDaily, 20 March 2014. <www.sciencedaily.com/releases/2014/03/140320101459.htm>.
University of South Florida (USF Innovation). (2014, March 20). Stem cell combination therapy improves traumatic brain injury outcomes. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/03/140320101459.htm
University of South Florida (USF Innovation). "Stem cell combination therapy improves traumatic brain injury outcomes." ScienceDaily. www.sciencedaily.com/releases/2014/03/140320101459.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins