Featured Research

from universities, journals, and other organizations

'Sewing machine' idea gives insight into origins of Alzheimer's

Date:
April 1, 2014
Source:
Lancaster University
Summary:
A new imaging tool inspired by the humble sewing machine has been invented, providing fresh insight into the origins of Alzheimer’s and Parkinson’s disease. These diseases are caused by tiny toxic proteins too small to be studied with traditional optical microscopy.

Researchers at Lancaster University have invented a new imaging tool inspired by the humble sewing machine which is providing fresh insight into the origins of Alzheimer's and Parkinson's disease.

Related Articles


These diseases are caused by tiny toxic proteins too small to be studied with traditional optical microscopy. Previously it was thought that Alzheimer's was caused by the accumulation of long 'amyloid' fibres at the centre of senile plaques in the brain, due to improper folding of a protein called amyloid-β.

But new research suggests that these fibres and plaques are actually the body's protective response to the presence of even smaller, more toxic structures made from amyloid-β called 'oligomers'.

Existing techniques are not sufficient to get a good look at these proteins; optical microscopy does not provide enough resolution at this scale, and electron microscopy gives the resolution but not the contrast.

To solve the problem, Physicist Dr Oleg Kolosov and his team at Lancaster have developed a new imaging technique -- Ultrasonic Force Microscopy (UFM) -- inspired by the motion of a sewing machine. Their work has been published in Scientific Reports.

Dr Kolosov said: "By using a vibrating scanner, which moves quickly up and down like the foot of a sewing machine needle, the friction between the sample and the scanner was reduced -- resulting in a better quality, and high contrast nanometre scale resolution image."

It is one of a new generation of tools being developed worldwide to bring the oligomers into focus, enabling medical researchers to understand how they behave.

At Lancaster, Claire Tinker used UFM to image these oligomers. To help see them more clearly she needed to increase the contrast of the image and used poly-L-lysine (PLL) which kept the proteins stuck to the slides as the vibrating scanner was passed over them.

Lancaster University Biomedical Scientist Professor David Allsop said: "These high quality images are vitally important if we are to understand the pathways involved in formation of these oligomers, and this new technique will now be used to test the effects of inhibitors of oligomer formation that we are developing as a possible new treatment for Alzheimer's disease."

The technique worked so well that the team now hopes to develop it so that oligomer formation can be monitored as they are made in real time.

This would give researchers a clearer understanding of the early phases of Alzheimer's and Parkinson's and could potentially be one way of developing a future test for these diseases.


Story Source:

The above story is based on materials provided by Lancaster University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire Tinker-Mill, Jennifer Mayes, David Allsop, Oleg V. Kolosov. Ultrasonic force microscopy for nanomechanical characterization of early and late-stage amyloid-β peptide aggregation. Scientific Reports, 2014; 4 DOI: 10.1038/srep04004

Cite This Page:

Lancaster University. "'Sewing machine' idea gives insight into origins of Alzheimer's." ScienceDaily. ScienceDaily, 1 April 2014. <www.sciencedaily.com/releases/2014/04/140401122336.htm>.
Lancaster University. (2014, April 1). 'Sewing machine' idea gives insight into origins of Alzheimer's. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2014/04/140401122336.htm
Lancaster University. "'Sewing machine' idea gives insight into origins of Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2014/04/140401122336.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) — People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) — Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) — A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) — Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins