Featured Research

from universities, journals, and other organizations

Low-cost, highly efficient OLED lighting: Europium complexes emit red light at record efficiency

Date:
April 2, 2014
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
Researchers worldwide continue search for better luminescent materials for OLED manufacturing. Two new compounds with europium complexes display in their class record high luminescence efficiencies in red, and their properties enable faster, low cost manufacturing of thin OLED films.

Michał Maciejczyk, a doctoral student at the IPC PAS, demonstrates record efficient luminescence of europium complexes with phosphine oxide co-ligands -- new chemicals developed at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.
Credit: IPC PAS, Grzegorz Krzyżewski

Researchers worldwide continue search for better luminescent materials for OLED manufacturing. Two new compounds with europium complexes developed at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw display in their class record high luminescence efficiencies in red, and their properties enable faster, low cost manufacturing of thin OLED films.

Related Articles


Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw developed two new materials with record high luminescence efficiency. The compounds were prepared using phosphine oxides (oxidised organic compounds containing phosphorus-carbon bonds) as co-ligands in europium ion-based complexes. A research group from Scotland's University of St. Andrews collaborating with the IPC PAS used the developed compounds to build prototype OLEDs generating nearly monochromatic red light.

"Both compounds, carefully designed by us, display in their class a record-breaking luminescence efficiency. As a matter of fact, we know red emitters with somewhat higher efficiency, containing iridium, but it's completely different type of materials," notices Prof. Marek Pietraszkiewicz from the IPC PAS.

Red light emitted by europium complexes with phosphine oxides is of well-defined wavelength, about 612 nanometer (a billionth part of a meter). The luminescence quantum yields of these compounds reach 90%.

"A narrow emission wavelength range and the record-breaking efficiency result from our approach to molecular design. We attach extended, highly rigid phosphine oxides to europium complexes. As a result, the energy delivered to the molecule is not dissipated in unnecessary vibrations or rotations. Instead of delivering heat to the surrounding we have higher efficiency and virtually monochromatic light," explains Michał Maciejczyk, a doctoral student from the International Doctoral Studies at the IPC PAS.

An important advantage of the luminescent materials developed and produced in the IPC PAS is their stability -- they do not degrade when exposed to oxygen or light. Equally important is, however, the possibility to produce films of these materials from solutions. Existing manufacturing technologies for production of OLED films required usually the use of high vacuum evaporation and deposition. The vacuum deposition technique is very expensive, troublesome, and not everywhere available. It also requires that material is warmed up to 200-300 degrees centigrade, a temperature not well-tolerated by all compounds. The problems disappear when the films can be deposited directly from solution -- and this is possible for phosphine oxides with europium complexes.

Potential applications of the new materials include not only OLED displays or lighting components, such as rear lights of mechanical vehicles, but also flexible elastic dermal patches for use in anticancer therapies. The europium complex-based compounds incorporated in such patches would generate light of exactly known wavelength that could locally activate appropriately selected active ingredients, delivered earlier with other methods to patient's ill skin cells. During therapy, the dermal patch would require only a small power supply from a battery. Patient mobility would be minimally affected, and hospitalisation would not be needed any longer.


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marek Pietraszkiewicz, Michal Maciejczyk, Ifor D. W. Samuel, Shuyu Zhang. Highly photo- and electroluminescent 1,3-diketonate Eu(iii) complexes with spiro-fluorene-xantphos dioxide ligands: synthesis and properties. Journal of Materials Chemistry C, 2013; 1 (48): 8028 DOI: 10.1039/C3TC30783B

Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Low-cost, highly efficient OLED lighting: Europium complexes emit red light at record efficiency." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402095446.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2014, April 2). Low-cost, highly efficient OLED lighting: Europium complexes emit red light at record efficiency. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/04/140402095446.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Low-cost, highly efficient OLED lighting: Europium complexes emit red light at record efficiency." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402095446.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins