Featured Research

from universities, journals, and other organizations

Ocean-going freighter without crew

Date:
April 2, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Ships of the future will soon be steered across 'the Seven Seas' – autonomously. A new simulator is helping propel these plans forward. The core of the autonomous freighter is served by a centralized software application. It analyzes the data from all sensors and determines, for example, if and how the ship changes its course in order to avoid collisions with, for example, a loose container floating around that may have fallen from another freighter.

On the bridge of a modern ship, a lot already runs automatically. But these unmanned ships of the future are not intended to operate completely unsupervised.
Credit: © Fraunhofer MUNIN

Ships of the future will soon be steered across 'the Seven Seas' -- autonomously. A new simulator is helping propel these plans forward. Partners from five different countries engineered the design of the autonomous freighter.

Hans-Christoph Burmeister scans over the onboard instrumentation: an electronic maritime chart; a display of water depths; the adjacent monitor that displays the radar image. Burmeister then reaches for the wheel and steers his 220 m mass-goods freighter into a new direction. "We are now sailing on a course of 290 degrees, speed twelve knots." Even if this scenario is quite realistic, Burmeister is no captain on the bridge, but is standing instead in a room at the Fraunhofer Center for Maritime Logistics and Services CML in Hamburg. A ship navigation simulator has been installed at the facility of the Fraunhofer Institute for Material Flow and Logistics IML. The steering and display instruments resemble those of a freighter. The simulator is expected to help advance an ambitious undertaking: under the EU Project MUNIN, the Fraunhofer researchers, together with partners from five countries, are engineering the design for an autonomous ship -- a bulk carrier that sails across the world's seas without a crew. The motive: "In Europe, making a career in shipping is no longer a popular choice," explains Project Coordinator Burmeister. "This industry has successor problems."

In the approach, there is already technology for an autonomous ship -- on the modern bridge of a ship, quite a lot is already automated: The autopilot steers a pre-set course with the support of GPS, at tempo automation system maintains the pace of speed. Radar equipment and ship detection systems search the surroundings and sound the alarm automatically in the event of risk. In addition, an autonomous ship should be equipped with other sensors: Original and infrared cameras are to observe the ocean surface, in order to detect specifically smaller vehicles, flotsam, or shipwrecked.

In an emergency, operators can intervene via satellite

The core of the autonomous freighter is served by a centralized software application. It analyzes the data from all sensors and determines, for example, if and how the ship changes its course in order to avoid collisions with, for example, a loose container floating around that may have fallen from another freighter. Nonetheless, the autonomous ship will not be travelling unsupervised. A human being is supposed to monitor all events and, if necessary, intervene. "Certain situations are conceivable in which the autonomous on-board systems are overextended," Burmeister explains, "such as when multiple ships are simultaneously on collision course or technical breakdowns arise." For these cases, a station is at the ready on land which will intervene via satellite and can steer the ship remotely.

In order to demonstrate how this might appear in an actual setting Burmeister is putting his simulator into gear. On the screen, you can see a container ship approaching from port. Although Burmeister's freighter has right-of-way, the other ship just will not budge. In order to prevent collision, the researcher takes control through the autonomous ship. "I deactivate the autopilot, set a course change for starboard, reduce speed and wait until the other ship has been passed. "Even when docking and casting off, a human being should be at the helm. If the ship departs from the harbor, a crew is on board. Once the freighter reaches open sea, the team leaves the ship via pilot vessel or helicopter, and automated steering takes over. At the destination, the reverse is conducted: Right in time, just before entry into the harbor, a team goes on board in order to steer the freighter in.

The MUNIN project was launched in autumn of 2012. Since the demands for an autonomous ship are highly diverse, the experts work meticulously on the various detail issues. This way they can guarantee that the ship's propellers are also running reliably during those times when no mechanical technician is available. The engine rooms have to this date been configured so that you can leave them unattended for a 24-hour period. Were a fire to break out on board -- due to a short circuit -- an automatic sprinkler system would have to start up. As a precaution, critical areas are flooded with CO2, so that no fire can catch here in the first place. For tough sea passages, the autopilot should turn the hull in such manner that the waves hit it as little as possible, and in general one would circumnavigate impending inclement weather at the outset.

Computer simulation ready by 2015

The EU project is slated for completion by the autumn of 2015. The goal is a computer simulation that allows experts to test and review their ideas on a virtual basis. After that, it would be conceivable to furnish a real ship with a completely automated system. "Yet even beforehand, manned navigation could benefit from our results," says Burmeister. Because individual components that the MUNIN technicians are assiduously working on would already be helpful on the bridge of any vessel today. Thus, an automated lookout system would ease the burden on the crew just as much as an improved collision warning system.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Ocean-going freighter without crew." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402095653.htm>.
Fraunhofer-Gesellschaft. (2014, April 2). Ocean-going freighter without crew. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/04/140402095653.htm
Fraunhofer-Gesellschaft. "Ocean-going freighter without crew." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402095653.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins