Featured Research

from universities, journals, and other organizations

Regolith of small asteroids formed by thermal fatigue

Date:
April 2, 2014
Source:
Southwest Research Institute
Summary:
The centimeter-sized fragments and smaller particles that make up the regolith -- the layer of loose, unconsolidated rock and dust -- of small asteroids is formed by temperature cycling that breaks down rock in a process called thermal fatigue, according to a new article.

The centimeter-sized fragments and smaller particles that make up the regolith -- the layer of loose, unconsolidated rock and dust -- of small asteroids is formed by temperature cycling that breaks down rock in a process called thermal fatigue, according to a paper published today in the Nature Advance Online Publication.

Related Articles


Previous studies suggested that the regolith of asteroids one kilometer wide and smaller was made from material falling to the surface after impacts and from boulders that were pulverized by micrometeoroid impacts. Recent laboratory experiments and impact modeling conducted by a team of researchers from Observatoire de la Côte d'Azur, Hopkins Extreme Materials Institute at Johns Hopkins University, Institut Supérieur de l'Aéronautique et de l'Espace and Southwest Research Institute (SwRI) have shown that the debris from large impacts reaches escape velocities and breaks free from the gravitational pull of these asteroids, indicating this mechanism is not the dominant process for regolith creation.

The team's research showed that thermal fragmentation, which is induced by mechanical stresses caused by temperature variations of the rapidly spinning asteroid's short night and day, to be the process primarily responsible for breaking up rocks larger than a few centimeters on asteroids.

"We took meteorites as the best analog of asteroid surface materials that we have on the Earth," said Dr. Marco Delbo of the Observatoire de la Côte d'Azur. "We then submitted these meteorites to temperature cycles similar to those that rocks experience on the surfaces of near-Earth asteroids and we found that microcracks grow inside these meteorites quickly enough to entirely break them on timescales much shorter than the typical lifetime of asteroids."

Model extrapolation of these experiments also showed that thermal fragmentation caused rocks to break down an order of magnitude faster than from micrometeoroid impacts, particularly at distances of 1 astronomical unit (about 93 million miles) with the speed of breakdown slowing at distances further from the Sun.

"Even asteroids significantly farther from the Sun showed thermal fatigue fragmentation to be a more relevant process for rock breakup than micrometeoroid impacts," said Dr. Simone Marchi, a scientist in the SwRI Space Science and Engineering Division.

The results of this study suggest that thermal fragmentation, combined with solar radiation pressures that sweep away surface particles, could completely erode small asteroids at distances closer to the Sun (about 28 million miles) in about 2 million years.

The French Agence National de la Recherche SHOCKS, BQR of the Observatoire de la Côte d'Azur, the University of Nice-Sophia Antipolis, the Laboratory GeoZur, the French National Program of Planetology, and NASA's Solar System Exploration Research Virtual Institute funded this research.


Story Source:

The above story is based on materials provided by Southwest Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marco Delbo, Guy Libourel, Justin Wilkerson, Naomi Murdoch, Patrick Michel, K. T. Ramesh, Clément Ganino, Chrystele Verati, Simone Marchi. Thermal fatigue as the origin of regolith on small asteroids. Nature, 2014; DOI: 10.1038/nature13153

Cite This Page:

Southwest Research Institute. "Regolith of small asteroids formed by thermal fatigue." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402133953.htm>.
Southwest Research Institute. (2014, April 2). Regolith of small asteroids formed by thermal fatigue. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2014/04/140402133953.htm
Southwest Research Institute. "Regolith of small asteroids formed by thermal fatigue." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402133953.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) — NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) — Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) — Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins