Featured Research

from universities, journals, and other organizations

Gene sequencing project discovers mutations tied to deadly brain tumors in young children

Date:
April 7, 2014
Source:
St. Jude Children's Research Hospital
Summary:
New mutations in pediatric brain tumors known as high-grade gliomas, which most often occur in the youngest patients, have been discovered by researchers. The discoveries stem from the most comprehensive effort yet to identify the genetic missteps driving these deadly tumors. The results provide desperately needed drug development leads, particularly for agents that target the underlying mutations. This and other studies show these mutations often differ based on patient age.

Research from the Pediatric Cancer Genome Project has identified new mutations in pediatric brain tumors known as high-grade gliomas, including tumors like diffuse intrinsic pontine glioma pictured in this MRI.
Credit: Zoltan Patay, M.D., Ph.D.

The St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project has identified new mutations in pediatric brain tumors known as high-grade gliomas (HGGs), which most often occur in the youngest patients. The research appears today as an advance online publication in the scientific journal Nature Genetics.

The discoveries stem from the most comprehensive effort yet to identify the genetic missteps driving these deadly tumors. The results provide desperately needed drug development leads, particularly for agents that target the underlying mutations. This and other studies show these mutations often differ based on patient age. HGGs represent 15 to 20 percent of brain and spinal tumors in children. Despite aggressive therapy with surgery, radiation and chemotherapy, long-term survival for HGG patients remains less than 20 percent.

The study is one of four being published simultaneously in the same issue of Nature Genetics that link recurring mutations in ACVR1 to cancer for the first time. Pediatric Cancer Genome Project researchers found that ACVR1 was mutated in 32 percent of 57 patients diagnosed with a subtype of HGG called diffuse intrinsic pontine glioma (DIPG). While DIPGs are usually found in children ages 5 to 10, ACVR1 mutations occurred most frequently in younger-than-average patients. DIPG occurs in the brainstem, which controls vital functions and cannot be surgically removed.

The investigators also identified alteration in NTRK genes that drove tumor development in young HGG patients whose tumors developed outside the brainstem. This study included 10 patients who were age 3 or younger when they were diagnosed with such non-brainstem HGGs. Of those, 40 percent had tumors with alterations in one of three NTRK genes and few other changes. The alterations occurred when a segment of the NTRK genes involved in regulating cell division fused with part of another gene.

"These results indicate the NTRK fusion genes might be very potent drivers of cancer development that have the ability to generate tumors with few other mutations," said co-corresponding author Suzanne Baker, Ph.D., a member of the St. Jude Department of Developmental Neurobiology. The other corresponding author is Jinghui Zhang, Ph.D., a member of the St. Jude Department of Computational Biology. "We want to see if these tumors might be selectively sensitive to therapies that target the pathways that are disrupted as a result of these fusion genes," Baker said.

Added co-author Richard K. Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis: "We've made some very exciting discoveries that likely will result in more effective diagnosis and treatment of these particularly nasty tumors."

In this study, researchers analyzed 127 HGGs from 118 pediatric patients, including whole genome sequencing of the complete tumor and normal DNA from 42 patients. More targeted sequencing of additional tumors was conducted to track how instructions encoded in DNA were translated into the proteins that do the work of cells.

The recurring presence of ACVR1 mutations in a subset of DIPG patients was one of the biggest surprises, Baker said. ACVR1 carries instructions for making a protein receptor on the cell membrane. The receptor functions as an on-off switch for a biochemical pathway named bone morphogenetic protein, or BMP. The pathway helps regulate growth and development of bone and other tissue. Working in zebra fish and mouse brain cells, researchers found evidence that ACVR1 mutations from DIPG resulted in the BMP pathway being inappropriately and permanently switched on.

In individuals with an inherited disorder called fibrodysplasia ossificans progressiva (FOP), the same ACVR1 mutations lead not to cancer, but to a different mechanism resulting in abnormal growth of bone in other tissues. Patients with FOP carry the ACVR1 mutation in every cell, while the gene is mutated only in the tumor cells of DIPG patients. "The same mutations are doing something very different in these two terrible and rare diseases. We are working to understand not only how the mutations contribute to cancer, but also whether blocking the BMP pathway offers a new way to treat the tumor," Baker said.

The ACVR1 mutations often occurred with mutations in a gene that carries instructions for making the histone H3.1 protein. That protein influences gene activity through its role in packaging DNA in the nucleus. Mutations in the histone H3 family of proteins were first reported in an earlier Pediatric Cancer Genome Project study. Baker said the new findings suggest the two mutations work together to give tumor cells a selective advantage in the developing brainstem.

While the ACVR1 mutations occurred only in tumors in the brainstem, the NTRK fusion genes were found in HGGs that developed throughout the brain. By combining pieces of different genes, fusion genes can lead to production of abnormal proteins that disrupt cell function. Fusion genes were identified in almost half of all pediatric HGGs in this study, but the NTRK fusions were the most common. The NTRK fusions involved a gene segment encoding a tyrosine kinase domain. This domain functions as an on-off switch for several important regulatory mechanisms in cells that often malfunction in cancer cells.

NTRK fusion genes have been identified in other pediatric and adult brain tumors. This study marks the first report of the genes in pediatric HGGs. The NTRKfusion genes were identified in part through targeted sequencing of RNA. RNA molecules help translate the instructions carried in DNA into the proteins that do the work of cells. This study was the first to include RNA sequencing in an analysis of HGGs.

The study was part of the Pediatric Cancer Genome Project, which has sequenced the complete normal and tumor genomes of 700 young cancer patients. The project was launched in 2010 to harness advances in genome sequencing technology to improve understanding and treatment of some of the most aggressive and least understood childhood cancers.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gang Wu, Alexander K Diaz, Barbara S Paugh, Sherri L Rankin, Bensheng Ju, Yongjin Li, Xiaoyan Zhu, Chunxu Qu, Xiang Chen, Junyuan Zhang, John Easton, Michael Edmonson, Xiaotu Ma, Charles Lu, Panduka Nagahawatte, Erin Hedlund, Michael Rusch, Stanley Pounds, Tong Lin, Arzu Onar-Thomas, Robert Huether, Richard Kriwacki, Matthew Parker, Pankaj Gupta, Jared Becksfort, Lei Wei, Heather L Mulder, Kristy Boggs, Bhavin Vadodaria, Donald Yergeau, Jake C Russell, Kerri Ochoa, Robert S Fulton, Lucinda L Fulton, Chris Jones, Frederick A Boop, Alberto Broniscer, Cynthia Wetmore, Amar Gajjar, Li Ding, Elaine R Mardis, Richard K Wilson, Michael R Taylor, James R Downing, David W Ellison, Jinghui Zhang, Suzanne J Baker. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 2014; DOI: 10.1038/ng.2938

Cite This Page:

St. Jude Children's Research Hospital. "Gene sequencing project discovers mutations tied to deadly brain tumors in young children." ScienceDaily. ScienceDaily, 7 April 2014. <www.sciencedaily.com/releases/2014/04/140407101737.htm>.
St. Jude Children's Research Hospital. (2014, April 7). Gene sequencing project discovers mutations tied to deadly brain tumors in young children. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2014/04/140407101737.htm
St. Jude Children's Research Hospital. "Gene sequencing project discovers mutations tied to deadly brain tumors in young children." ScienceDaily. www.sciencedaily.com/releases/2014/04/140407101737.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins