Featured Research

from universities, journals, and other organizations

Why auditory pitch and spatial elevation get high together: Shape of human ear may have evolved to mirror acoustics in natural world

Date:
April 8, 2014
Source:
Universitaet Bielefeld
Summary:
Have you ever wondered why most natural languages invariably use the same spatial attributes -- high versus low -- to describe auditory pitch? Or why, throughout the history of musical notation, high notes have been represented high on the staff? According to neuroscientists, high pitched sounds feel 'high' because, in our daily lives, sounds coming from high elevations are indeed more likely to be higher in pitch.

Researchers from Bielefeld University have demonstrated the origin of the mapping between auditory pitch and spatial elevation. Their analysis suggests that the shape of the human ear might have evolved to mirror the acoustic properties of the natural environment.
Credit: Cesare & Ernst

Have you ever wondered why most natural languages invariably use the same spatial attributes -- high versus low -- to describe auditory pitch? Or why, throughout the history of musical notation, high notes have been represented high on the staff? According to a team of neuroscientists from Bielefeld University and the Max Planck Institute for Biological Cybernetics in Tübingen, high pitched sounds feel 'high' because, in our daily lives, sounds coming from high elevations are indeed more likely to be higher in pitch. This study has just appeared in the science journal PNAS.

Related Articles


Dr. Cesare Parise and colleagues set out to investigate the origins of the mapping between sound frequency and spatial elevation by combining three separate lines of evidence. First of all, they recorded and analyzsed a large sample of sounds from the natural environment and found that high frequency sounds are more likely to originate from high positions in space. Next, they analyzed the filtering of the human outer ear and found that, due to the convoluted shape of the outer ear -- the pinna -- sounds coming from high positions in space are filtered in such a way that more energy remains for higher pitched sounds. Finally, they asked humans in a behavioural experiment to localize sounds with different frequency and found that high frequency sounds were systematically perceived as coming from higher positions in space.

The results from these three lines of evidence were highly convergent, suggesting that all such diverse phenomena as the acoustics of the human ear, the universal use of spatial terms for describing pitch, or the reason why high notes are represented higher in musical notation ultimately reflect the adaptation of human hearing to the statistics of natural auditory scenes. 'These results are especially fascinating, because they do not just explain the origin of the mapping between frequency and elevation,' says Parise, 'they also suggest that the very shape of the human ear might have evolved to mirror the acoustic properties of the natural environment. What is more, these findings are highly applicable and provide valuable guidelines for using pitch to develop more effective 3D audio technologies, such as sonification-based sensory substitution devices, sensory prostheses, and more immersive virtual auditory environments.'

The mapping between pitch and elevation has often been considered to be metaphorical, and cross-sensory correspondences have been theorized to be the basis for language development. The present findings demonstrate that, at least in the case of the mapping between pitch and elevation, such a metaphorical mapping is indeed embodied and based on the statistics of the environment, hence raising the intriguing hypothesis that language itself might have been influenced by a set of statistical mappings between naturally occurring sensory signals.

Besides the mapping between pitch and elevation, human perception, cognition, and action are laced with seemingly arbitrary correspondences, such as that yellow-reddish colors are associated with a warm temperature or that sour foods taste sharp. This study suggests that many of these seemingly arbitrary mappings might in fact reflect statistical regularities to be found in the natural environment.

The Cognitive Neuroscience Group of the Biological Faculty is affiliated to the Center of Excellence Cognitive Interaction Technology (CITEC) at Bielefeld University. The group is focusing on human multisensory perception, sensorimortor integration, perceptual learning, and human-machine interaction. The researchers combine human psychophysical experimentation with computational modeling. The group currently consists of 15 members from a variety of different backgrounds: biology, cognitive science, psychology, medicine, physics, and engineering.

The Max Planck Institute for Biological Cybernetics uses experimental, theoretical, and methodological approaches to investigate cognitive processes. It employs approximately 300 employees from over 40 countries and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Biological Cybernetics is one of 80 institutes and research facilities belonging to the Max Planck Society for the Advancement of Science.

The Bernstein Center Tübingen is part of the National Bernstein Network for Computation Neuroscience. With this initiative, the Federal Ministry of Education and Research (BMBF) has been supporting the new research field of computation neuroscience with more than 170 million Euros since 2004.


Story Source:

The above story is based on materials provided by Universitaet Bielefeld. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. V. Parise, K. Knorre, M. O. Ernst. Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1322705111

Cite This Page:

Universitaet Bielefeld. "Why auditory pitch and spatial elevation get high together: Shape of human ear may have evolved to mirror acoustics in natural world." ScienceDaily. ScienceDaily, 8 April 2014. <www.sciencedaily.com/releases/2014/04/140408111431.htm>.
Universitaet Bielefeld. (2014, April 8). Why auditory pitch and spatial elevation get high together: Shape of human ear may have evolved to mirror acoustics in natural world. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/04/140408111431.htm
Universitaet Bielefeld. "Why auditory pitch and spatial elevation get high together: Shape of human ear may have evolved to mirror acoustics in natural world." ScienceDaily. www.sciencedaily.com/releases/2014/04/140408111431.htm (accessed October 23, 2014).

Share This



More Mind & Brain News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) — A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) — Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) — We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins