Featured Research

from universities, journals, and other organizations

Is the U.S. power grid too big?

Date:
April 8, 2014
Source:
American Institute of Physics
Summary:
Researchers are asking whether there is a "right" size for the U.S. power grid; they believe that smaller grids would reduce the likelihood of severe outages, such as the 2003 Northeast blackout, likening the grid behavior to sandpiles: “Sandpiles are stable until you get to a certain height. Then you add one more grain and the whole thing starts to avalanche.”

The overall operational "Risk" as a function of the system size (N), showing a decrease at first as the system becomes more efficient with size followed by an increase as the risk of large failures starts to dominate. The optimal size is then the minimum point in the curve.
Credit: B.A. Carreras/BACV Solutions

Some 90 years ago, British polymath J.B.S. Haldane proposed that for every animal there is an optimal size -- one which allows it to make best use of its environment and the physical laws that govern its activities, whether hiding, hunting, hoofing or hibernating. Today, three researchers are asking whether there is a "right" size for another type of huge beast: the U.S. power grid.

Related Articles


David Newman, a physicist at the University of Alaska, believes that smaller grids would reduce the likelihood of severe outages, such as the 2003 Northeast blackout that cut power to 50 million people in the United States and Canada for up to two days.

Newman and co-authors Benjamin Carreras, of BACV Solutions in Oak Ridge, Tenn., and Ian Dobson of Iowa State University make their case in the journal Chaos, which is produced by AIP Publishing.

Their investigation began 20 years ago, when Newman and Carreras were studying why stable fusion plasmas turned unstable so quickly. They modeled the problem by comparing the plasma to a sandpile.

"Sandpiles are stable until you get to a certain height. Then you add one more grain and the whole thing starts to avalanche. This is because the pile's grains are already close to the critical angle where they will start rolling down the pile. All it takes is one grain to trigger a cascade," he explained.

While discussing a blackout, Newman and Carreras realized that their sandpile model might help explain grid behavior.

The Structure of the U.S. Power Grid

North America has three power grids, interconnected systems that transmit electricity from hundreds of power plants to millions of consumers. Each grid is huge, because the more power plants and power lines in a grid, the better it can even out local variations in the supply and demand or respond if some part of the grid goes down.

On the other hand, large grids are vulnerable to the rare but significant possibility of a grid-wide blackout like the one in 2003.

"The problem is that grids run close to the edge of their capacity because of economic pressures. Electric companies want to maximize profits, so they don't invest in more equipment than they need," Newman said.

On a hot days, when everyone's air conditioners are on, the grid runs near capacity. If a tree branch knocks down a power line, the grid is usually resilient enough to distribute extra power and make up the difference. But if the grid is already near its critical point and has no extra capacity, there is a small but significant chance that it can collapse like a sandpile.

This is vulnerable to cascading events comes from the fact that the grid's complexity evolved over time. It reflects the tension between economic pressures and government regulations to ensure reliability.

"Over time, the grid evolved in ways that are not pre-engineered," Newman said.

Backup Power Versus Blackout Risk

In their new paper, the researchers ask whether the grid has an optimal size, one large enough to share power efficiently but small enough to prevent enormous blackouts.

The team based its analysis on the Western United States grid, which has more than 16,000 nodes. Nodes include generators, substations, and transformers (which convert high-voltage electricity into low-voltage power for homes and business).

The model started by comparing one 1,000-bus grid with ten 100-bus networks. It then assessed how well the grids shared electricity in response to virtual outages.

"We found that for the best tradeoff between providing backup power and blackout risk, the optimal size was 500 to 700 nodes," Newman said.

Though grid wide blackouts are highly unlikely, they can dominate costs. They are very expensive and take longer to get things back under control. They also require more crews and resources, so utilities can help one another as they do in smaller blackouts.

In smaller grids, the blackouts are smaller and easier to fix because utilities can call for help from surrounding regions. Overall, small grid blackouts have a lower cost to society," Newman said.

The researchers believe their insights into sizing might apply to other complex, evolved networks like the Internet and financial markets.

"If we reduce the number of connected pieces, maybe we can reduce the societal cost of failures," Newman added.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. A. Carreras, D. E. Newman, Ian Dobson. Does size matter? Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014 DOI: 10.1063/1.4868393

Cite This Page:

American Institute of Physics. "Is the U.S. power grid too big?." ScienceDaily. ScienceDaily, 8 April 2014. <www.sciencedaily.com/releases/2014/04/140408121922.htm>.
American Institute of Physics. (2014, April 8). Is the U.S. power grid too big?. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2014/04/140408121922.htm
American Institute of Physics. "Is the U.S. power grid too big?." ScienceDaily. www.sciencedaily.com/releases/2014/04/140408121922.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
DARPA Creates The Tech You Can Only Dream Of

DARPA Creates The Tech You Can Only Dream Of

Newsy (Nov. 20, 2014) Curious what a rocket-dodging car would look like? How about a robotic pack mule? Or maybe a wearable robot? These are a few of DARPA's projects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins