Featured Research

from universities, journals, and other organizations

New 'tunable' semiconductors will allow better detectors, solar cells

Date:
April 14, 2014
Source:
Georgia State University
Summary:
Researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range. The team hopes to use the technology in detectors, obviously, but also in improved solar cells that could absorb infrared light as well as the sun's visible rays.

One of the great problems in physics is the detection of electromagnetic radiation -- that is, light -- which lies outside the small range of wavelengths that the human eye can see. Think X-rays, for example, or radio waves.

Related Articles


Now, researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range. The team hopes to use the technology in detectors, but also in improved solar cells that could absorb infrared light as well as the sun's visible rays.

"This technology will also allow dual or multiband detectors to be developed, which could be used to reduce false positives in identifying, for example, toxic gases," said Unil Perera, a Regents' Professor of Physics at Georgia State University. Perera leads the Optoelectronics Research Laboratory, where fellow author and postdoctoral fellow Yan-Feng Lao is also a member. The research team also included scientists from the University of Leeds in England and Shanghai Jiao Tong University in China.

To understand the team's breakthrough, it's important to understand how semiconductors work. Basically, a semiconductor is exactly what its name implies -- a material that will conduct an electromagnetic current, but not always. An external energy source must be used to get those electrons moving.

But infrared light doesn't carry a lot of energy, and won't cause many semiconductors to react. And without a reaction, there's nothing to detect.

Until now, the only solution would have been to find a semiconductor material that would respond to long-wavelength, low-energy light like the infrared spectrum.

But instead, the researchers worked around the problem by adding another light source to their device. The extra light source primes the semiconductor with energy, like running hot water over a jar lid to loosen it. When a low-energy, long-wavelength beam comes along, it pushes the material over the top, causing a detectable reaction.

The new and improved device can detect wavelengths up to at least the 55 micrometer range, whereas before the same detector could only see wavelengths of about 4 micrometers. The team has run simulations showing that a refined version of the device could detect wavelengths up to 100 micrometers long.

Edmund Linfield, professor of terahertz electronics at the University of Leeds, whose team built the patterned semiconductors used in the new technique, said, "This is a really exciting breakthrough and opens up the opportunity to explore a wide range of new device concepts including more efficient photovoltaics and photodetectors."

Perera and Lao have filed a U.S. patent application for their detector design.


Story Source:

The above story is based on materials provided by Georgia State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yan-Feng Lao, A. G. Unil Perera, L. H. Li, S. P. Khanna, E. H. Linfield, H. C. Liu. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photonics, 2014; DOI: 10.1038/nphoton.2014.80

Cite This Page:

Georgia State University. "New 'tunable' semiconductors will allow better detectors, solar cells." ScienceDaily. ScienceDaily, 14 April 2014. <www.sciencedaily.com/releases/2014/04/140414101206.htm>.
Georgia State University. (2014, April 14). New 'tunable' semiconductors will allow better detectors, solar cells. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/04/140414101206.htm
Georgia State University. "New 'tunable' semiconductors will allow better detectors, solar cells." ScienceDaily. www.sciencedaily.com/releases/2014/04/140414101206.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins