Featured Research

from universities, journals, and other organizations

Fast, simple-to-use assay reveals 'family tree' of cancer metastases

Date:
April 21, 2014
Source:
Massachusetts General Hospital
Summary:
A simple assay that can reveal the evolutionary relationships between primary tumors and metastases within a patient has been developed. The information gathered may someday help with treatment planning. Cancer researchers are just beginning to investigate the extent and significance of genetic differences among tumor cells -- either cells within a discrete tumor or between a primary tumor and metastases in other parts of the body.

The process of metastasis -- a tumor's ability to spread to other parts of the body -- is still poorly understood. It is not easy to determine whether metastasis began early or late in the development of the primary tumor or whether individual metastatic sites were seeded directly from the original tumor or from an intermediate site. Now a research team has developed a simple assay that can reveal the evolutionary relationships among various tumor sites within a patient, information that may someday help with treatment planning.

"If we could build a 'family tree' of all cancer nodules in a patient, we could determine how different tumors are related to each other and reconstruct how the cancer evolved," says Kamila Naxerova, PhD, of the Steele Laboratory for Tumor Biology at Massachusetts General Hospital (MGH), corresponding author of the report being published in PNAS Early Edition. "Usually that would require extensive genetic analysis with complex sequencing methods, but our methodology achieves that goal quickly and with minimal experimental effort."

Cancer researchers are just beginning to investigate the extent and significance of genetic differences among tumor cells -- either cells within a discrete tumor or between a primary tumor and metastases in other parts of the body. The authors note that there are two different models of metastasis -- one in which an advanced primary tumor disseminates metastatic cells late in its development, which would predict little genetic difference between primary and metastatic cells, and another in which metastasis occurs early in tumor development, which would predict significant genetic differences in metastatic cells that have evolved separately from those in the primary tumor. Some studies have suggested that the two models apply to different types of cancer, but patient data so far has been limited.

Answering important clinical questions -- such as whether genetic diversity is a risk factor for aggressive tumor development or how it relates to treatment resistance -- requires analyzing samples from many patients with different types of cancer. Using technologies like whole genome or whole exome (the protein-coding portion of the genome) sequencing requires specialized equipment and advanced data analysis and is still relatively expensive. The approach developed by the MGH team focuses on small areas of the human genome -- so-called polyguanine (poly-G) repeats that are particularly susceptible to mutation, with genetic 'mistakes' occurring frequently during cell division. While these mutations do not directly relate to the development or progression of a tumor, they can reveal its lineage -- how individual tumor cells are related to each other.

In the current paper, the authors adapt Poly-G repeat analysis -- initially developed to study lineage relationships between single cells in mice -- to the study of human cancer for the first time. Analyzing the poly-G profiles of primary and metastatic colon cancer samples from 22 patients revealed that how the primary and metastatic tumors related to each other was different for each patient. In some individuals there were significant genetic differences between tumor sites, suggesting early metastatic spread; in others, there was little difference between a primary tumor and its metastases. The investigators also identified instances in which the genetic profiles of metastases were similar to those of only some cells in the primary tumor, suggesting that those cells were the source of the metastases, and other cases in which the genetic profiles of metastases from the same primary differed depending on their location.

"We found that there are several paths that can lead to metastatic disease," says Naxerova, a postdoctoral research fellow in the Steele Lab. "We are now applying this methodology to address specific clinically relevant questions about the biology of metastasis in larger numbers of patients. The method is fast and inexpensive and should be applicable to other types of tumors than colon cancer."

Co-author Elena Brachtel, MD, from MGH Pathology notes that archival tissues from the files of the department were used for this study. "After diagnostic studies on tissue removed during a patient's operation are completed, the formalin-fixed paraffin tissue blocks are stored for several years. Increasingly, new molecular tests can be performed on tissue that was removed from a patient several years earlier, at a time when these tests were not yet available."

Rakesh K. Jain, PhD, director of the Steele Lab and senior author of the paper, adds, "The assay has many potential clinical applications. For example, it could be used to reliably and quickly distinguish a metastasis from a second, independent tumor. Or it could identify the primary tumor in situations where multiple lesions are present and it is ambiguous which one is responsible for seeding metastases." Jain is the Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Naxerova, E. Brachtel, J. J. Salk, A. M. Seese, K. Power, B. Abbasi, M. Snuderl, S. Chiang, S. Kasif, R. K. Jain. Hypermutable DNA chronicles the evolution of human colon cancer. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1400179111

Cite This Page:

Massachusetts General Hospital. "Fast, simple-to-use assay reveals 'family tree' of cancer metastases." ScienceDaily. ScienceDaily, 21 April 2014. <www.sciencedaily.com/releases/2014/04/140421151929.htm>.
Massachusetts General Hospital. (2014, April 21). Fast, simple-to-use assay reveals 'family tree' of cancer metastases. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2014/04/140421151929.htm
Massachusetts General Hospital. "Fast, simple-to-use assay reveals 'family tree' of cancer metastases." ScienceDaily. www.sciencedaily.com/releases/2014/04/140421151929.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins