Featured Research

from universities, journals, and other organizations

Loss of memory in Alzheimer's mice models reversed through gene therapy

Date:
April 23, 2014
Source:
Universitat Auṭnoma de Barcelona
Summary:
Alzheimer's disease is the most common cause of dementia and affects some 400,000 people in Spain alone. However, no effective cure has yet been found. One of the reasons for this is the lack of knowledge on the cellular mechanisms which cause alterations in nerve transmissions and the loss of memory in the initial stages of the disease. Researchers have now discovered the cellular mechanism involved in memory consolidation and were able to develop a gene therapy which reverses the loss of memory in mice models with initial stages of Alzheimer's disease.

This image shows Crtc1 detection in mice neurons (in green).
Credit: Universitat Autonoma de Barcelona

Alzheimer's disease is the first cause of dementia and affects some 400,000 people in Spain alone. However, no effective cure has yet been found. One of the reasons for this is the lack of knowledge on the cellular mechanisms which cause alterations in nerve transmissions and the loss of memory in the initial stages of the disease.

Researchers from the Institute of Neuroscience at the Universitat Auṭnoma de Barcelona have discovered the cellular mechanism involved in memory consolidation and were able to develop a gene therapy which reverses the loss of memory in mice models with initial stages of Alzheimer's disease. The therapy consists in injecting into the hippocampus - a region of the brain essential to memory processing - a gene which causes the production of a protein blocked in patients with Alzheimer's, the “Crtc1” (CREB regulated transcription coactivator-1). The protein restored through gene therapy gives way to the signals needed to activate the genes involved in long-term memory consolidation.

To identify this protein, researchers compared gene expression in the hippocampus of healthy control mice with that of transgenic mice which had developed the disease. Through DNA microchips, they identified the genes ("transcriptome") and the proteins ("proteome") which expressed themselves in each of the mice in different phases of the disease. Researchers observed that the set of genes involved in memory consolidation coincided with the genes regulating Crtc1, a protein which also controls genes related to the metabolism of glucose and to cancer. The alteration of this group of genes could cause memory loss in the initial stages of Alzheimer's disease.

In persons with the disease, the formation of amyloid plaque aggregates, a process known to cause the onset of Alzheimer's disease, prevents the Crtc1 protein from functioning correctly. “When the Crtc1 protein is altered, the genes responsible for the synapsis or connections between neurons in the hippocampus cannot be activated and the individual cannot perform memory tasks correctly”, explains Carlos Saura, researcher of the UAB Institute of Neuroscience and head of the research. According to Saura, “this study opens up new perspectives on therapeutic prevention and treatment of Alzheimer's disease, given that we have demonstrated that a gene therapy which activates the Crtc1 protein is effective in preventing the loss of memory in lab mice".

The research, published today as a featured article in The Journal of Neuroscience, the official journal of the US Society of Neuroscience, paves the way for a new therapeutic approach to the disease. One of the main challenges in finding a treatment for the disease in the future is the research and development of pharmacological therapies capable of activating the Crtc1 protein, with the aim of preventing, slowing down or reverting cognitive alterations in patients.


Story Source:

The above story is based on materials provided by Universitat Auṭnoma de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Parra-Damas A., Valero J., Chen M., España J., Martin E., Ferrer I., Rodríguez-Alvarez J. and Saura C.A. Crtc1 Activates a Transcriptional Program Deregulated at Early Alzheimer's Disease-Related Stages. Journal of Neuroscience, April 2014 DOI: 10.1523/JNEUROSCI.5288-13.2014

Cite This Page:

Universitat Auṭnoma de Barcelona. "Loss of memory in Alzheimer's mice models reversed through gene therapy." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423101713.htm>.
Universitat Auṭnoma de Barcelona. (2014, April 23). Loss of memory in Alzheimer's mice models reversed through gene therapy. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/04/140423101713.htm
Universitat Auṭnoma de Barcelona. "Loss of memory in Alzheimer's mice models reversed through gene therapy." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423101713.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) — Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) — The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) — A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) — A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins