Featured Research

from universities, journals, and other organizations

Fluorescent-based tool reveals how medical nanoparticles biodegrade in real time

Date:
April 28, 2014
Source:
Children's Hospital of Philadelphia
Summary:
A unique, noninvasive method measures the disassembly of biodegradable nanoparticles that can be used to deliver medicines to patients. The technique is a necessary stop in translating nanoparticles into clinical use. "Nanoparticles could be formulated with contrast agents for diagnostic imaging, or could deliver anticancer drugs to a tumor," one researcher said. "Our measuring tool can help researchers to develop and optimize their nanomedicine formulations for a range of medical uses."

Nanoparticle disassembly causes a shift in the fluorescence pattern.
Credit: Children's Hospital of Philadelphia

Nanoparticles have been heralded as a potential "disruptive technology" in biomedicine, a versatile platform that could supplant conventional technologies, both as drug delivery vehicles and diagnostic tools.

First, however, researchers must demonstrate the properly timed disintegration of these extremely small structures, a process essential for their performance and their ability to be safely cleared out of a patient's body after their job is done. A new study presents a unique method to directly measure nanoparticle degradation in real time within biological environments.

"Nanoparticles are made with very diverse designs and properties, but all of them need to be eventually eliminated from the body after they complete their task," said cardiology researcher Michael Chorny, Ph.D., of The Children's Hospital of Philadelphia (CHOP). "We offer a new method to analyze and characterize nanoparticle disassembly, as a necessary step in translating nanoparticles into clinical use."

Chorny and colleagues described this novel methodology in the Proceedings of the National Academy of Sciences, published online March 3, 2014, and in the journal's March 18 print issue.

The CHOP team has long investigated biodegradable nanoparticles for medical applications. With diameters ranging from a few tens to a few hundreds of nanometers, these particles are 10 to 1000 times smaller than red blood cells (a nanometer is one millionth of a millimeter). One major challenge is to continuously monitor the fate of nanoparticles in model biological settings and in living cells without disrupting cell functions.

"Accurately measuring nanoparticle disassembly in real time directly in media of interest, such as the interior of a living cell or other types of complex biological milieu, is challenging. Our goal here was to develop such a noninvasive method providing unbiased results," said Chorny. "These results will help researchers to customize nanoparticle formulations for specific therapeutic and diagnostic applications."

The study team used a physical phenomenon called Fφrster resonance energy transfer, or FRET, as a sort of molecular ruler to measure the distance between the components of their particles.

For this, the researchers labelled their formulations with fluorescent probes exhibiting the radiationless transfer of energy, i.e., FRET, when located within the same particle. This process results in a special pattern of fluorescence, a "fingerprint" of physically intact particles, which gradually disappears as particle disassembly proceeds. This change in the nanoparticle fluorescent properties can be monitored directly without separating the particles from their environment, allowing for undistorted, continuous measurements of their integrity.

"The molecules must be very close together, just several nanometers apart, for the energy transfer to take place," said Chorny. "The changes in the fluorescence patterns sensitively reflect the kinetics of nanoparticle disassembly. Based on these results, we can improve the particle design in order to make them safer and more effective."

The rate of disassembly is highly relevant to specific potential applications. For instance, some nanoparticles might carry a drug intended for quick action, while others should keep the drug protected and released in a controlled fashion over time. Tailoring formulation properties for these tasks may require carefully adjusting the time frame of the nanoparticle disassembly. This is where this technique can become a valuable tool, greatly facilitating the optimization process

In the current study, the scientists analyzed how nanoparticles disintegrated both in liquid and semi-liquid media, and in vascular cells simulating the fate of particles used to deliver therapy to injured blood vessels. "We found that disassembly is likely to occur more rapidly early in the vessel healing process and slow down later. This may have implications for the design of nanoparticles intended for targeted drug, gene or cell therapy of vascular disease," said Chorny.

Chorny and colleagues have long studied using nanoparticles formulated as carriers delivering antiproliferative drugs and biotherapeutics to blood vessels subject to dangerous restenosis (re-blockage). Many of these studies, in the Cardiology Research laboratory of CHOP co-author Robert J. Levy, M.D., use external magnetic fields to guide iron oxide-impregnated nanoparticles to metallic arterial stents, narrow scaffolds implanted within blood vessels.

The current research, said Chorny, while immediately relevant to restenosis therapy and magnetically guided delivery, has much broader potential applications. "Nanoparticles could be formulated with contrast agents for diagnostic imaging, or could deliver anticancer drugs to a tumor," he said. "Our measuring tool can help researchers to develop and optimize their nanomedicine formulations for a range of medical uses."


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. E. Tengood, I. S. Alferiev, K. Zhang, I. Fishbein, R. J. Levy, M. Chorny. Real-time analysis of composite magnetic nanoparticle disassembly in vascular cells and biomimetic media. Proceedings of the National Academy of Sciences, 2014; 111 (11): 4245 DOI: 10.1073/pnas.1324104111

Cite This Page:

Children's Hospital of Philadelphia. "Fluorescent-based tool reveals how medical nanoparticles biodegrade in real time." ScienceDaily. ScienceDaily, 28 April 2014. <www.sciencedaily.com/releases/2014/04/140428154846.htm>.
Children's Hospital of Philadelphia. (2014, April 28). Fluorescent-based tool reveals how medical nanoparticles biodegrade in real time. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2014/04/140428154846.htm
Children's Hospital of Philadelphia. "Fluorescent-based tool reveals how medical nanoparticles biodegrade in real time." ScienceDaily. www.sciencedaily.com/releases/2014/04/140428154846.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins