Featured Research

from universities, journals, and other organizations

Engineers grow functional human cartilage in lab

Date:
April 30, 2014
Source:
Columbia University School of Engineering and Applied Science
Summary:
Engineers have successfully grown -- for the first time -- fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study demonstrates new ways to better mimic the enormous complexity of tissue development, regeneration, and disease.

This is a full section of a tissue construct with cartilage at the top and bone substrate underneath. The blue stain marks proteoglycan, one of the two key components of cartilage, and red marks the nuclei of the cells.
Credit: Photo by Sarindr Bhumiratana//Columbia Engineering

Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways to better mimic the enormous complexity of tissue development, regeneration, and disease, is published in the April 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).

Related Articles


"We've been able -- for the first time -- to generate fully functional human cartilage from mesenchymal stem cells by mimicking in vitro the developmental process of mesenchymal condensation," says Gordana Vunjak-Novakovic, who led the study and is the Mikati Foundation Professor of Biomedical Engineering at Columbia Engineering and professor of medical sciences. "This could have clinical impact, as this cartilage can be used to repair a cartilage defect, or in combination with bone in a composite graft grown in lab for more complex tissue reconstruction."

For more than 20 years, researchers have unofficially called cartilage the "official tissue of tissue engineering," Vunjak-Novakovic observes. Many groups studied cartilage as an apparently simple tissue: one single cell type, no blood vessels or nerves, a tissue built for bearing loads while protecting bone ends in the joints. While there has been great success in engineering pieces of cartilage using young animal cells, no one has, until now, been able to reproduce these results using adult human stem cells from bone marrow or fat, the most practical stem cell source. Vunjak-Novakovic's team succeeded in growing cartilage with physiologic architecture and strength by radically changing the tissue-engineering approach.

The general approach to cartilage tissue engineering has been to place cells into a hydrogel and culture them in the presence of nutrients and growth factors and sometimes also mechanical loading. But using this technique with adult human stem cells has invariably produced mechanically weak cartilage. So Vunjak-Novakovic and her team, who have had a longstanding interest in skeletal tissue engineering, wondered if a method resembling the normal development of the skeleton could lead to a higher quality of cartilage.

Sarindr Bhumiratana, postdoctoral fellow in Vunjak-Novakovic's Laboratory for Stem Cells and Tissue Engineering, came up with a new approach: inducing the mesenchymal stem cells to undergo a condensation stage as they do in the body before starting to make cartilage. He discovered that this simple but major departure from how things were usually? being done resulted in a quality of human cartilage not seen before.

Gerard Ateshian, Andrew Walz Professor of Mechanical Engineering, professor of biomedical engineering, and chair of the Department of Mechanical Engineering, and his PhD student, Sevan Oungoulian, helped perform measurements showing that the lubricative property and compressive strength -- the two important functional properties -- of the tissue-engineered cartilage approached those of native cartilage. The researchers then used their method to regenerate large pieces of anatomically shaped and mechanically strong cartilage over the bone, and to repair defects in cartilage.

"Our whole approach to tissue engineering is biomimetic in nature, which means that our engineering designs are defined by biological principles," Vunjak-Novakovic notes. "This approach has been effective in improving the quality of many engineered tissues -- from bone to heart. Still, we were really surprised to see that our cartilage, grown by mimicking some aspects of biological development, was as strong as 'normal' human cartilage."

The team plans next to test whether the engineered cartilage tissue maintains its structure and long-term function when implanted into a defect.

"This is a very exciting time for tissue engineers," says Vunjak-Novakovic. "Stem cells are transforming the future of medicine, offering ways to overcome some of the human body's fundamental limitations. We bioengineers are now working with stem cell scientists and clinicians to develop technologies that will make this dream possible. This project is a wonderful example that we need to 'think as a cell' to find out how exactly to coax the cells into making a functional human tissue of a specific kind. It's emblematic of the progress being driven by the exceptional young talent we have among our postdocs and students at Columbia Engineering."

The study was funded by the National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering, National Institute for Dental and Craniofacial Research, and National Institute for arthritis and musculoskeletal diseases).


Story Source:

The above story is based on materials provided by Columbia University School of Engineering and Applied Science. The original article was written by Holly Evarts. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Bhumiratana, R. E. Eton, S. R. Oungoulian, L. Q. Wan, G. A. Ateshian, G. Vunjak-Novakovic. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1324050111

Cite This Page:

Columbia University School of Engineering and Applied Science. "Engineers grow functional human cartilage in lab." ScienceDaily. ScienceDaily, 30 April 2014. <www.sciencedaily.com/releases/2014/04/140430142820.htm>.
Columbia University School of Engineering and Applied Science. (2014, April 30). Engineers grow functional human cartilage in lab. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/04/140430142820.htm
Columbia University School of Engineering and Applied Science. "Engineers grow functional human cartilage in lab." ScienceDaily. www.sciencedaily.com/releases/2014/04/140430142820.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins