Featured Research

from universities, journals, and other organizations

New sensor system detects early signs of concussion in real time

Date:
May 1, 2014
Source:
University of Arkansas, Fayetteville
Summary:
A wireless health-monitoring system that detects early signs of traumatic brain injury by continuously monitoring various brain and neural functions has been developed by engineers. "Wearable nanosensor systems can detect the severity of head injury by quantifying force of impact, be it light or violent," said an expert involved in the study. "In real time, our system continuously monitors neural activity and recognizes the signs and symptoms of traumatic brain injury, such as drowsiness, dizziness, fatigue, sensitivity to light and anxiety."

Concussions have become a serious, long-term health risk for football players. New sensor technology could allow a physician to better monitor the early physiological signs of concussions.
Credit: Image courtesy of University of Arkansas, Fayetteville

Imagine a physician, sitting in a stadium press box, equipped with technology that makes it possible to continuously monitor each player's physiological signs that indicate concussion.

Related Articles


Engineering researchers at the University of Arkansas have developed a wireless health-monitoring system that does exactly that. The system includes a dry, textile-based nanosensor and accompanying network that detects early signs of traumatic brain injury by continuously monitoring various brain and neural functions.

"Wearable nanosensor systems can detect the severity of head injury by quantifying force of impact, be it light or violent," said Vijay Varadan, Distinguished Professor of electrical engineering. "In real time, our system continuously monitors neural activity and recognizes the signs and symptoms of traumatic brain injury, such as drowsiness, dizziness, fatigue, sensitivity to light and anxiety."

The system is a network of flexible sensors woven or printed into a skullcap worn under a helmet. The sensors are built with carbon nanotubes and two- and three-dimensional, textile nanostructures grown at the University of Arkansas. The system uses Zigbee/Bluetooth wireless telemetry to transmit data from the sensors to a receiver, which then transmits the data via a wireless network to a remote server or monitor, such as a computer or a smartphone. A more powerful wide-area wireless network would allow the system to detect large quantities of data taken continuously from each player on the field and transmit the data to multiple locations -- a press box, ambulance and hospital, for example.

The sensors have considerable power and capability to monitor sensitive neural and physiological activity, Varadan said. Under stress due to impact, the sensor chips are sturdier than printed circuit-board chips and can withstand high temperatures and moisture.

The system includes a pressure-sensitive textile sensor embedded underneath the helmet's outer shell. This sensor measures intensity, direction and location of impact force. The other sensors work as an integrated network within the skullcap. These include a printable and flexible gyroscope that measures rotational motion of the head and body balance and a printable and flexible 3-D accelerometer that measures lateral head motion and body balance.

The cap also includes a collection of textile-based, dry sensors that measure electrical activity in the brain, including signs that indicate the onset of mild traumatic brain injury. These sensors detect loss of consciousness, drowsiness, dizziness, fatigue, anxiety and sensitivity to light. Finally, the skullcap includes a sensor to detect pulse rate and blood oxygen level.

A modified sensor can evaluate damage to nerve tissue due to force impact. This sensor records electrical signals that work together to construct a spatiotemporal image of active regions of the brain. Varadan said these low-resolution images can substitute for conventional neuro-imaging technology, such as MRI and computerized tomography (CT scan).

Varadan and researchers in his laboratory have tested the system on a small scale for real-time application. The researchers plan to test the system during an actual game this fall.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "New sensor system detects early signs of concussion in real time." ScienceDaily. ScienceDaily, 1 May 2014. <www.sciencedaily.com/releases/2014/05/140501101008.htm>.
University of Arkansas, Fayetteville. (2014, May 1). New sensor system detects early signs of concussion in real time. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2014/05/140501101008.htm
University of Arkansas, Fayetteville. "New sensor system detects early signs of concussion in real time." ScienceDaily. www.sciencedaily.com/releases/2014/05/140501101008.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

At Least 15 Injured in a California Natural Gas Pipeline Explosion

At Least 15 Injured in a California Natural Gas Pipeline Explosion

Reuters - US Online Video (Apr. 18, 2015) At least 15 injred after natural gas transmission line ruptures in Fresno, California. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins