Featured Research

from universities, journals, and other organizations

Magnetic fingerprint of our galaxy revealed

Date:
May 6, 2014
Source:
University of British Columbia
Summary:
Astrophysicists have released an unprecedented map of the entire sky that charts the magnetic field shaping our Milky Way Galaxy. The map reveals magnetic field lines running parallel to the plane of the Galaxy, as well as great loops and whorls associated with nearby clouds of gas and dust.

The magnetic field of our Milky Way Galaxy as seen by ESA’s Planck satellite. This image was compiled from the first all-sky observations of polarised light emitted by interstellar dust in the Milky Way. Darker regions correspond to stronger polarised emission, and the striations indicate the direction of the magnetic field projected on the plane of the sky. The dark band running horizontally across the centre corresponds to the Galactic Plane. Here, the polarisation reveals a regular pattern on large angular scales, which is due to the magnetic field lines being predominantly parallel to the plane of the Milky Way. The data also reveal variations of the polarisation direction within nearby clouds of gas and dust. This can be seen in the tangled features above and below the plane, where the local magnetic field is particularly disorganised.
Credit: ESA and the Planck Collaboration

An international team of astrophysicists has released an unprecedented map of the entire sky that charts the magnetic field shaping the Milky Way galaxy and helps in our understanding of the birth of the universe.

The team -- which includes researchers from the University of British Columbia and the Canadian Institute for Theoretical Astrophysics (CITA) at the University of Toronto -- created the map using data from the Planck Space Telescope.

Since 2009, the Planck telescope has charted the Cosmic Microwave Background (CMB), the light from the Universe a mere 380,000 years after the Big Bang.

But Planck also observes light from much closer than the farthest reaches of time and space. With its High Frequency Instrument, Planck detects the light from microscopic dust particles within our galaxy and helps identify the non-random direction in which the light waves vibrate -- known as polarization. It is this polarized light that indicates the orientation of the field lines.

"Just as the Earth has a magnetic field, our galaxy has a large-scale magnetic field -- albeit 100,000 times weaker than the magnetic field at the Earth's surface," says UBC Astrophysicist Douglas Scott. "And just as the Earth's magnetic field generates phenomena such as the aurorae, our galaxy's magnetic field is important for many phenomena within it."

"And now," says Scott, "Planck has given us the most detailed picture of it yet."

The "fingerprint" and other results are described in four forthcoming papers in the journal Astronomy & Astrophysics.

CITA's Prof. Peter Martin uses Planck data to study the dust found throughout our galaxy. "Dust is often overlooked but it contains the stuff from which terrestrial planets and life form," he says. "So by probing the dust, Planck helps us understand the complex history of the galaxy as well as the life within it."

Background

For cosmologists studying the origin and evolution of the Universe, data to be released later this year by scientists from the Planck collaboration should allow astronomers to separate with great confidence any possible foreground signal from our Galaxy from the tenuous, primordial, polarized signal from the CMB. In March 2014, scientists from the BICEP2 collaboration claimed the first detection of such a signal.

The Planck data will enable a much more detailed investigation of the early history of the cosmos, from the accelerated expansion when the Universe was much less than one second old to the period when the first stars were born, several hundred million years later.

And according to Prof. J. Richard Bond (CITA), "These results help us lift the veil of emissions from these tiny but pervasive Galactic dust grains which obscure a Planck goal of peering into the earliest moments of the Big Bang to find evidence for gravitational waves created in that epoch, as reported by BICEP2."

Planck includes contributions from the Canadian Space Agency (CSA). The CSA funds two Canadian research teams that are part of the Planck science collaboration, and who helped develop both of Planck's complementary science instruments, the High Frequency Instrument (HFI) and the Low Frequency Instrument (LFI). Professors J. Richard Bond of the University of Toronto (Director of Cosmology and Gravity at the Canadian Institute for Advanced Research) and Douglas Scott of the University of British Columbia lead the Canadian Planck team, which includes members from the University of Alberta, Université Laval and McGill University.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal References:

  1. Planck Collaboration: P. A. R. Ade, N. Aghanim, D. Alina, M. I. R. Alves, C. Armitage-Caplan, M. Arnaud, D. Arzoumanian, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, E. Battaner, K. Benabed, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, A. Bracco, C. Burigana, R. C. Butler, J.-F. Cardoso, A. Catalano, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, S. Colombi, L. P. L. Colombo, C. Combet, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, E. M. de Gouveia Dal Pino, A. de Rosa, G. de Zotti, J. Delabrouille, F.-X. Désert, C. Dickinson, J. M. Diego, S. Donzelli, O. Doré, M. Douspis, et al. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy & Astrophysics, 2014 [link]
  2. Planck Collaboration: P. A. R. Ade, N. Aghanim, M. I. R. Alves, G. Aniano, C. Armitage-Caplan, M. Arnaud, D. Arzoumanian, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, E. Battaner, K. Benabed, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, A. Bracco, C. Burigana, J.-F. Cardoso, A. Catalano, A. Chamballu, H. C. Chiang, P. R. Christensen, S. Colombi, L. P. L. Colombo, C. Combet, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, C. Dickinson, J. M. Diego, S. Donzelli, O. Doré, M. Douspis, X. Dupac, T. A. Enßlin, H. K. Eriksen, E. Falgarone, L. Fanciullo, K. Ferrière, et al. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy & Astrophysics, 2014 [link]
  3. Planck Collaboration: P. A. R. Ade, N. Aghanim, D. Alina, G. Aniano, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, E. Battaner, C. Beichman, K. Benabed, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, C. Burigana, J.-F. Cardoso, A. Catalano, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, S. Colombi, L. P. L. Colombo, C. Combet, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F.-X. Désert, C. Dickinson, J. M. Diego, S. Donzelli, O. Doré, M. Douspis, J. Dunkley, X. Dupac, T. A. Enßlin, H. K. Eriksen, E. Falgarone, et al. Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization. Astronomy & Astrophysics, 2014 [link]
  4. Planck Collaboration: P. A. R. Ade, M. I. R. Alves, G. Aniano, C. Armitage-Caplan, M. Arnaud, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, E. Battaner, K. Benabed, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, C. Burigana, J.-F. Cardoso, A. Catalano, A. Chamballu, H. C. Chiang, L. P. L. Colombo, C. Combet, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, G. de Zotti, J. Delabrouille, F.-X. Désert, C. Dickinson, J. M. Diego, S. Donzelli, O. Doré, M. Douspis, J. Dunkley, X. Dupac, T. A. Enßlin, H. K. Eriksen, E. Falgarone, L. Fanciullo, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, et al. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy & Astrophysics, 2014 [link]

Cite This Page:

University of British Columbia. "Magnetic fingerprint of our galaxy revealed." ScienceDaily. ScienceDaily, 6 May 2014. <www.sciencedaily.com/releases/2014/05/140506120240.htm>.
University of British Columbia. (2014, May 6). Magnetic fingerprint of our galaxy revealed. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/05/140506120240.htm
University of British Columbia. "Magnetic fingerprint of our galaxy revealed." ScienceDaily. www.sciencedaily.com/releases/2014/05/140506120240.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) — A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) — NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) — Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins