Featured Research

from universities, journals, and other organizations

Energy device for flexible electronics packs a lot of power

Date:
May 7, 2014
Source:
American Chemical Society
Summary:
While flexible gadgets such as 'electronic skin' and roll-up touch screens are moving ever closer to reality, their would-be power sources are either too wimpy or too stiff. But that's changing fast. Scientists have developed a new device that's far thinner than paper, can flex and bend, and store enough energy to provide critical back-up power for portable electronics.

A new energy device provides enough energy and flexibility for tomorrow’s bendable gadgets.
Credit: American Chemical Society

While flexible gadgets such as "electronic skin" and roll-up touch screens are moving ever closer to reality, their would-be power sources are either too wimpy or too stiff. But that's changing fast. Scientists have developed a new device that's far thinner than paper, can flex and bend, and store enough energy to provide critical back-up power for portable electronics. Their report appears in the Journal of the American Chemical Society.

Related Articles


In their paper, James Tour and colleagues point out that many materials that have been investigated for energy storage potential are pliant but don't pack much power, or they can load up on energy but are rigid. These include polymers and carbon-based materials such as carbon nanotubes, which have been all the rage for certain applications. But these materials fall short as reliable supercapacitors, which are batteries' lesser-known cousins that step in when the main energy source peters out. Seeking a better solution to this energy hurdle, Tour's team took a different approach.

They figured out a way to make a flexible thin film out of nickel and fluoride that is full of tiny holes, or nanopores. These pores throughout the material allow ions to flow easily, a critical feature for an energy device. The resulting structure can pack in far more power for its size. The researchers show that they can bend and fold the thin film and recharge it thousands of times with little loss in performance. They also say that manufacturers could easily scale up the process for mass production.

The authors acknowledge funding from the Smalley Institute for Nanoscale Science and Technology and the Air Force Office of Scientific Research MURI program.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yang Yang, Gedeng Ruan, Changsheng Xiang, Gunuk Wang, James M. Tour. Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices. Journal of the American Chemical Society, 2014; 136 (17): 6187 DOI: 10.1021/ja501247f

Cite This Page:

American Chemical Society. "Energy device for flexible electronics packs a lot of power." ScienceDaily. ScienceDaily, 7 May 2014. <www.sciencedaily.com/releases/2014/05/140507095946.htm>.
American Chemical Society. (2014, May 7). Energy device for flexible electronics packs a lot of power. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2014/05/140507095946.htm
American Chemical Society. "Energy device for flexible electronics packs a lot of power." ScienceDaily. www.sciencedaily.com/releases/2014/05/140507095946.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins