Featured Research

from universities, journals, and other organizations

Cornichon proteins are key to improved brain signaling

Date:
May 21, 2014
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Cornichon proteins dictate the course of excitatory transmission between nerve cells, neurobiologists have shown. The team has succeeded in clarifying the function of the so-called cornichon proteins in the brain: They improve the communication between neurons and the reliability of signal transmission.

Experimental situation at a synapse: The "upper" pipette triggers an action potential (upper white trace) in the presynaptic ending (violet), while the "lower" pipette records the ionic currents through the AMPA receptors (lower white trace) in the postsynaptic mossy cell (red).
Credit: Illustration: Bernd Fakler

Neurobiologists show how cornichon proteins dictate the course of excitatory transmission between nerve cells.

Related Articles


Prof. Dr. Bernd Fakler and Dr. Sami Boudkkazi and their research team at the Institute of Physiology and the Cluster of Excellence BIOSS 'Centre for Biological Signalling Studies' of the University of Freiburg have succeeded in clarifying the function of the so-called cornichon proteins in the brain: They improve the communication between neurons and the reliability of signal transmission. The biologists published their findings in the journal Neuron.

In 2009, Fakler's research group has already demonstrated that the cornichon proteins are part of the AMPA-type glutamate receptors in the membranes of neurons in the brain. These receptors are composed of a pool of up to 35 proteins, and 70-80 percent of them contain cornichon proteins. The AMPA receptors are located at synapses -- the junctions between two neurons where signals are transmitted.

Upon its release from one cell, the neurotransmitter glutamate binds to the AMPA receptors of a neighboring cell and thus excites it. As a general rule, however, neurons in the brain do not pass on information upon single excitations, but rather integrate excitations over time. Thus, the more excitatory stimuli a neuron receives from different synapses, the more likely it will transmit the information.

AMPA receptors have a special function for cellular learning, explains Fakler: "After 'learning', a neuron transmits signals more quickly and reliably upon stimulation. As far as we can tell, neurons achieve this primarily by increasing the amount of AMPA receptors in their synapses, which leads to stronger excitation." By elucidating the structure of the AMPA receptors, researchers hope to improve their understanding of learning processes in the brain.

The biologists have now discovered that "Cornichon-containing AMPA receptors keep their pores open for a longer period of time after activation by glutamate, thus promoting a longer-lasting excitatory current," says Fakler. As a consequence of the increased synaptic excitation, the threshold for transmission of information is reached more quickly and reliably.

It was previously unclear why some neurons, such as interneurons, show short excitatory currents, while others, like mossy cells or pyramidal cells, exhibit longer-lasting excitations. The Freiburg researchers demonstrated the key role of the cornichon proteins by studying the electrical signals at individual synapses in the rat brain: They stimulated the synapses of mossy cells and interneurons and compared the ionic currents through the respective AMPA receptors. By labelling the cornichon proteins, they demonstrated that mossy cells with cornichon-containing AMPA receptors maintain their excitation for longer periods.

In addition, the biologists shortened the periods of excitation by removing cornichon proteins from the mossy cells via virus-mediated protein knockdown. When they added cornichon proteins to interneurons via virus-driven protein expression -- these neurons were excited for longer periods of time.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler. Cornichon2 Dictates the Time Course of Excitatory Transmission at Individual Hippocampal Synapses. Neuron, 2014; 82 (4): 848 DOI: 10.1016/j.neuron.2014.03.031

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Cornichon proteins are key to improved brain signaling." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521133256.htm>.
Albert-Ludwigs-Universität Freiburg. (2014, May 21). Cornichon proteins are key to improved brain signaling. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2014/05/140521133256.htm
Albert-Ludwigs-Universität Freiburg. "Cornichon proteins are key to improved brain signaling." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521133256.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) — Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) — Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) — If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) — People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins