Featured Research

from universities, journals, and other organizations

Computer models helping unravel the science of life? How cells of the fruit fly react to changes in the environment

Date:
May 22, 2014
Source:
University of Manchester
Summary:
Scientists have developed a sophisticated computer modelling simulation to explore how cells of the fruit fly react to changes in the environment. The model shows how cells of the fruit fly communicate with each other during its development.

Scientists have developed a sophisticated computer modelling simulation to explore how cells of the fruit fly react to changes in the environment.

Related Articles


The research, published today in the science journal Cell, is part of an on-going study at The Universities of Manchester and Sheffield that is investigating how external environmental factors impact on health and disease.

The model shows how cells of the fruit fly communicate with each other during its development. Dr Martin Baron, who led the research, said: "The work is a really nice example of researchers from different disciplines of maths and biology working together to tackle challenging problems."

The current phase of the study aims to understand how temperature interacts with cell signalling networks during development. Flies are able to develop normally across a wide range of temperatures and it is not understood how this is achieved.

The combined disciplines approach was undertaken because the complexity of development involves numerous components that are interconnected with each other in networks of cell to cell communication pathways, whose outcomes are difficult to predict without computer simulations.

The fruit fly is a commonly used in lab work because, although its development is relatively simple, around 75% of known human disease genes have a recognisable match in the genome of fruit flies which means they can be used to study the fundamental biology behind complex conditions such as neurodegeneration or cancer.

Baron said: "it is exciting that the computer model was able to make predictions that we could test by going back to the fly experiments to investigate the effects of different mutations which alter the components of the cells. It shows us that the model is working well and provides a solid basis on which to develop its sophistication further."

The next phase will see the team research how the cell signalling network adjusts and responds to other environmental changes such as nutrition. Baron says "There is a lot of interest in how environmental inputs influence our health and disease by interacting with our genetic makeup. Our initial studies have already shown that changes to the adult fly's diet can also affect how cells inside a fly communicate with each other and produce responses in certain fly tissues. This is a promising avenue for future studies."

Baron explains that there are wider implications for understanding human health and disease: "Many different types of signal control normal development but when some of these signals are mis-activated they can result in the formation of tumours."

"What we've learnt from studying the flies" said Baron, "is that some communication signals can arise in different ways and this means that, in cancer, mis-activation of these signals can also occur by different routes. This is important because it can help us to understand how to stop mis-activation from occurring."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hideyuki Shimizu, Simon A. Woodcock, Marian B. Wilkin, Barbora Trubenová, Nicholas A.M. Monk, Martin Baron. Compensatory Flux Changes within an Endocytic Trafficking Network Maintain Thermal Robustness of Notch Signaling. Cell, 2014; 157 (5): 1160 DOI: 10.1016/j.cell.2014.03.050

Cite This Page:

University of Manchester. "Computer models helping unravel the science of life? How cells of the fruit fly react to changes in the environment." ScienceDaily. ScienceDaily, 22 May 2014. <www.sciencedaily.com/releases/2014/05/140522123505.htm>.
University of Manchester. (2014, May 22). Computer models helping unravel the science of life? How cells of the fruit fly react to changes in the environment. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/05/140522123505.htm
University of Manchester. "Computer models helping unravel the science of life? How cells of the fruit fly react to changes in the environment." ScienceDaily. www.sciencedaily.com/releases/2014/05/140522123505.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins