Featured Research

from universities, journals, and other organizations

A new 'Kabuto-like' nickel catalyst forms bioactive frameworks from phenol derivatives

Date:
May 27, 2014
Source:
Institute of Transformative Bio-Molecules (ITbM), Nagoya University
Summary:
Researchers have developed a new nickel catalyst with a 'Kabuto-like' structure that was found to catalyze the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form alpha-arylketones, which are found in many biologically active compounds. (A Kabuto is a helmet worn by Japanese samurai.)

This shows examples of bio-active compounds containing a carbonyl aryl structure.
Credit: ITbM, Nagoya University

Researchers at ITbM, Nagoya University developed a new nickel catalyst with a "Kabuto-like" structure that was found to catalyze the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form alpha-arylketones, which are found in many biologically active compounds. (A Kabuto is a helmet worn by Japanese samurai.)

Nagoya, Japan -- Professors Kenichiro Itami and Junichiro Yamaguchi of the Institute of Transformative Bio-Molecules (WPI-ITbM) and graduate students Ryosuke Takise and Kei Muto of Nagoya University have succeeded in developing a novel nickel catalyst to catalyze the cross-coupling reaction between carbonyl compounds and phenol derivatives. Phenol derivatives are known to be readily available starting materials, and this reaction has enabled the facile generation of alpha-arylketone compounds (aryl = aromatic ring; ketone = a carbonyl (C=O functionality with a carbon oxygen double bond) bonded to two other carbon atoms), which constitute the framework of many pharmaceuticals and organic materials. The study published online on May 20, 2014 in Angewandte Chemie International Edition, is expected to become an important tool in synthesizing biologically active molecules and a range of versatile organic materials containing the alpha-arylketone framework.

Cross-coupling reactions catalyzed by transition metals enables direct formation of carbon-carbon bonds, which is widely utilized in the formation of a vast number of organic frameworks. This strategy that won the 2010 Nobel Prize in Chemistry extends to alpha-arylation reactions, which allows incorporation of aromatic rings into carbonyl compounds through carbon-carbon bond formation, mainly using palladium as a catalyst. Many organic molecules such as amino acids contain carbonyl groups. Thus, alpha-arylation, which links carbonyl compounds to aromatic rings present in an array of organic molecules, has been used as one of the main reactions to create the organic backbone of many pharmaceuticals and organic materials. Professors Itami and Yamaguchi along with co-workers have been working to develop a new economical catalyst to conduct alpha-arylation reactions using readily available phenol derivatives as starting materials. This reaction system is envisaged to lead to the facile production of alpha-arylketones on an industrial scale.

Conventional methods for alpha-arylation have used palladium as a metal catalyst. "Since 2009, we have been looking at the potential of nickel as a cross-coupling catalyst, which is a more economical catalyst relative to palladium," says Professor Yamaguchi, one of the leaders of this research, "through our endeavors to develop improved conditions, we have found that phenol derivatives can act as readily available aryl coupling partners," he describes. Aryl substrates have mainly utilized aryl halides, which are halogenated compounds resulting in toxic wastes. Phenol derivatives on the other hand are usually less toxic and are more readily available compared to aryl halides.

Itami and his group have been working on the development of new generation cross-coupling methods using nickel as a catalyst. They have already reported various cross-coupling reactions including those between aromatic compounds and phenol derivatives, C-H coupling reactions using esters along with reactions linking aromatic rings and alkenes. These pioneering studies have been accomplished by enhancing the reactivity of nickel through tuning of various ligands. One of the effective ligands discovered in 2011 is the dcype (1,2-bisdicyclohexylphosphinoethane) ligand, which is used with nickel to activate phenol derivatives. However, the nickel(dcype) catalyst was insufficient to initiate the cross-coupling between carbonyl compounds and phenol derivatives. "We have screened various ligands and found that dcypt (1,2-bisdicyclohexylphosphinothiophene), which bears a thiophene (a 5-membered heterocycle containing sulfur) unit, acts as an effective air-stable ligand to improve the reactivity of nickel and bring about this reaction in high yield. Moreover, we were able to use a weak base to carry out this reaction, which improves the substrate scope of this reaction," explains graduate students Takise and Muto who carried out the experiments.

Development of this new nickel catalyst has enabled the creation of a variety of alpha-arylketone compounds, including an estrone derivative and an amino acid tyrosine derivative, both bearing the phenol moiety. Professor Itami elaborates, "Many natural products and bioactive compounds contain the alpha-arylketone framework. Our relatively low-cost nickel-dcypt catalyst has exhibited high activity to couple readily available phenol derivatives in high yield. This system has the potential to be applicable in the synthesis of molecules that can control biological systems of plants and animals, which is one of the main research themes running in our new institute (ITbM)."


Story Source:

The above story is based on materials provided by Institute of Transformative Bio-Molecules (ITbM), Nagoya University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryosuke Takise, Kei Muto, Junichiro Yamaguchi, Kenichiro Itami. Nickel-Catalyzed α-Arylation of Ketones with Phenol Derivatives. Angewandte Chemie International Edition, 2014; DOI: 10.1002/anie.201403823

Cite This Page:

Institute of Transformative Bio-Molecules (ITbM), Nagoya University. "A new 'Kabuto-like' nickel catalyst forms bioactive frameworks from phenol derivatives." ScienceDaily. ScienceDaily, 27 May 2014. <www.sciencedaily.com/releases/2014/05/140527114747.htm>.
Institute of Transformative Bio-Molecules (ITbM), Nagoya University. (2014, May 27). A new 'Kabuto-like' nickel catalyst forms bioactive frameworks from phenol derivatives. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/05/140527114747.htm
Institute of Transformative Bio-Molecules (ITbM), Nagoya University. "A new 'Kabuto-like' nickel catalyst forms bioactive frameworks from phenol derivatives." ScienceDaily. www.sciencedaily.com/releases/2014/05/140527114747.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins