Featured Research

from universities, journals, and other organizations

Memory is a dynamic and interactive process, new research shows

Date:
May 28, 2014
Source:
Canadian Association for Neuroscience
Summary:
Memory is more dynamic and changeable than previously thought, new research shows. Two important brain regions, the hippocampus and the neocortex, have different yet complementary roles in remembering places and events. A researcher proposes a novel theory to explain interactions between these brain regions, and how we remember. These results could help inform treatment and management of people with memory disorders.

Research presented by Morris Moscovitch, from the Rotman Research Institute at the University of Toronto, shows that memory is more dynamic and changeable than previously thought. Dr. Moscovich's results reveal that important interactions between the hippocampus and the neocortex, two regions of the brain, have different yet complementary roles in remembering places and events. These results highlight that different forms of memories exist in the brain, and that these are encoded in different, but interacting parts of the brain. Dr. Moscovitch proposes a novel theory to explain these interactions, that furthers our understanding of what we remember, and could be useful for treatment and management of people with memory disorders.

These results were presented at the 8th Annual Meeting of the Canadian Association for Neuroscience held in Montreal, Canada May 25 to 28th 2014.

By studying how humans remember events and places in the short and long term, and how rodents remember and navigate through familiar and unfamiliar environment, Dr. Moscovitch and others have revealed differences between what they call "episodic memory," which is a form of memory rich in contextual details, dependent on a brain region called the hippocampus, and another form of memory, called "semantic memory" which relies primarily on neocortex, and which is a more general memory, recording the gist of the initial episodic memory.

Studies in animals and humans have shown that the hippocampus, a brain region located deep inside the brain, has a central role in recent and remote episodic memory. Patients with hippocampal loss, including the famous Henry Molaison (patient HM) and Kent Cochrane (patient KC), were shown to be unable to make new memories, but they retained the ability to recall earlier events, in a schematic, general fashion. Dr. Moscovitch, investigating how rich, recent memories are often converted to more schematic, remote memories has elaborated a theory he has termed "multiple trace/transformation theory."

According to multiple trace/transformation theory, each time an episodic memory is retrieved, it is automatically re-encoded by the hippocampus along with the new context in which retrieval occurs. Over time, and with every retrieval, multiple memory traces accumulate; the neocortex extracts similarities from these traces to form a generalized memory, the semantic memory. By this process, the memory is transformed over time, from a mostly hippocampus dependent, context-rich memory, to a more general memory, a recording of the essential elements of the memory, that captures the gist of the initial episodic memory.

Dr. Moscovitch presented results that show that the same processes apply to memory about places and the environment. Initially dependent on the hippocampus, they also are transformed, and become schematic memories that can be retrieved without the involvement of the hippocampus. As it was previously thought that the hippocampus was always involved in remembering places, this discovery sheds new light on the different forms of memory that exist.

"Spatial representations provide the framework in which events unfold, so that they interact with each other to form rich episodic memories that have both spatial and event elements" says Dr. Moscovitch. "Memory for events is facilitated if they occur in familiar rather than unfamiliar places. These findings could be used to help ameliorate memory problems in older adults, and in people with dementia, who have to leave their home and move into new living quarters."


Story Source:

The above story is based on materials provided by Canadian Association for Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Canadian Association for Neuroscience. "Memory is a dynamic and interactive process, new research shows." ScienceDaily. ScienceDaily, 28 May 2014. <www.sciencedaily.com/releases/2014/05/140528133213.htm>.
Canadian Association for Neuroscience. (2014, May 28). Memory is a dynamic and interactive process, new research shows. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/05/140528133213.htm
Canadian Association for Neuroscience. "Memory is a dynamic and interactive process, new research shows." ScienceDaily. www.sciencedaily.com/releases/2014/05/140528133213.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins