Featured Research

from universities, journals, and other organizations

New gene involved in Parkinson's disease found, finding that may result in new treatments

Date:
June 4, 2014
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
A new gene involved in Parkinson’s disease has been identified by a team of researchers, a finding that may one day provide a target for a new drug to prevent and potentially even cure the debilitating neurological disorder. Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease, and there is no cure for the progressive and devastating illness. About 60,000 Americans are diagnosed with Parkinson's disease each year.

A team of UCLA researchers has identified a new gene involved in Parkinson's disease, a finding that may one day provide a target for a new drug to prevent and potentially even cure the debilitating neurological disorder.

Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease, and there is no cure for the progressive and devastating illness. About 60,000 Americans are diagnosed with Parkinson's disease each year. It is estimated that as many as 1 million Americans live with Parkinson's disease, which is more than the number of people diagnosed with multiple sclerosis, muscular dystrophy and Lou Gehrig's disease combined. In Parkinson's disease, multiple neurons in the brain gradually break down or die. This leads to the movement impairments, such as tremor, rigidity, slowness in movement and difficulty walking, as well as depression, anxiety, sleeping difficulties and dementia, said Dr. Ming Guo, the study team leader, associate professor of neurology and pharmacology and a practicing neurologist at UCLA.

A handful of genes have been identified in inherited cases of Parkinson's disease. Guo's team was one of two groups worldwide that first reported in 2006 in the journal Nature that two of these genes, PTEN-induced putative kinase 1 (PINK1) and PARKIN, act together to maintain the health of mitochondria -- the power house of the cell that is important in maintaining brain health. Mutations in these genes lead to early-onset Parkinson's disease.

Guo's team has further shown that when PINK1 and PARKIN are operating correctly, they help maintain the regular shape of healthy mitochondria and promote elimination of damaged mitochondria. Accumulation of unhealthy or damaged mitochondria in neurons and muscles ultimately results in Parkinson's disease.

In this study, the team found that the new gene, called MUL1 (also known as MULAN and MAPL), plays an important role in mediating the pathology of the PINK1 and PARKIN. The study, performed in fruit flies and mice, showed that providing an extra amount of MUL1 ameliorates the mitochondrial damage due to mutated PINK/PARKIN, while inhibiting MUL1 in mutant PINK1/PARKIN exacerbates the damage to the mitochondria. In addition, Guo and her collaborators found that removing MUL1 from mouse neurons of the PARKIN disease model results in unhealthy mitochondria and degeneration of the neurons.

The five-year study appears June 4, 2014, in eLife, a new, open access scientific journal for groundbreaking biomedical and life research sponsored by the Howard Hughes Medical Institute (United States), the Wellcome Trust (United Kingdom) and Max Plank Institutes (Germany).

"We are very excited about this finding," Guo said. "There are several implications to this work, including that MUL1 appears to be a very promising drug target and that it may constitute a new pathway regulating the quality of mitochondria."

Guo characterized the work as "a major advancement in Parkinson's disease research."

"We show that MUL1 dosage is key and optimizing its function is crucial for brain health and to ward off Parkinson's disease," she said. "Our work proves that mitochondrial health is of central importance to keep us from suffering from neurodegeneration. Further, finding a drug that can enhance MUL1 function would be of great benefit to patients with Parkinson's disease."

Going forward, Guo and her team will test these results in more complex organisms, hoping to uncover additional functions and mechanisms of MUL1. Additionally, the team will perform small molecule screens to help identify potential compounds that specifically target MUL1. Further, they will examine if mutations in MUL1 exist in some patients with inherited forms of Parkinson's.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Yun, R. Puri, H. Yang, M. A. Lizzio, C. Wu, Z.-H. Sheng, M. Guo. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife, 2014; 3 (0): e01958 DOI: 10.7554/eLife.01958

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "New gene involved in Parkinson's disease found, finding that may result in new treatments." ScienceDaily. ScienceDaily, 4 June 2014. <www.sciencedaily.com/releases/2014/06/140604151727.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2014, June 4). New gene involved in Parkinson's disease found, finding that may result in new treatments. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2014/06/140604151727.htm
University of California, Los Angeles (UCLA), Health Sciences. "New gene involved in Parkinson's disease found, finding that may result in new treatments." ScienceDaily. www.sciencedaily.com/releases/2014/06/140604151727.htm (accessed September 14, 2014).

Share This



More Health & Medicine News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com
Health Care Workers 'Chasing' Ebola Outbreak

Health Care Workers 'Chasing' Ebola Outbreak

Newsy (Sep. 12, 2014) The worst known Ebola outbreak is proving extremely difficult to contain. Hospitals are full, and victims of the virus are suffering in the streets. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins