Featured Research

from universities, journals, and other organizations

Optical invisibility cloak built for diffusive media (like fog or milk)

Date:
June 6, 2014
Source:
Karlsruhe Institute of Technology
Summary:
Real invisibility cloaks are rather complex and work in certain situations only. The laws of physics prevent an optical invisibility cloak from making objects in air invisible for any directions, colors, and polarizations. If the medium is changed, however, it becomes much easier to hide objects. Physicists have now succeeded in manufacturing with relatively simple means and testing an ideal invisibility cloak for diffusive light-scattering media, such as fog or milk.

In a diffusive light-scattering medium, light moves on random paths (see magnifying glass). A normal object (left) casts a shadow, an object with an invisibility cloak (right) does not.
Credit: R. Schittny / KIT

Real invisibility cloaks are rather complex and work in certain situations only. The laws of physics prevent an optical invisibility cloak from making objects in air invisible for any directions, colors, and polarizations. If the medium is changed, however, it becomes much easier to hide objects. KIT physicists have now succeeded in manufacturing with relatively simple means and testing an ideal invisibility cloak for diffusive light-scattering media, such as fog or milk. Their results are published in the journal Science.

Related Articles


In diffusive media, light does no longer propagate linearly, but is scattered permanently by the particles in the medium. Examples are fog, clouds, or frosted glass panes that let the light in, but hide the light source. "This property of light-scattering media can be used to hide objects inside," says Robert Schittny, first author of the study. "The new invisibility cloaks have a rather simple structure."

In the experiment, Schittny used an extended light source to illuminate a Plexiglas tank of a few centimeters in width from the back. The tank was filled with a white, turbid liquid. Objects inside cast a visible shadow onto the tank wall. Simple metal cylinders or spheres of a few centimeters in diameter were used as test objects. To hide them, they were first coated with a white dispersion paint, such that the light was reflected in a diffusive manner. To pass the light around the object, the researchers applied a thin shell made of the transparent silicon material PDMS, to which a certain concentration of light-scattering melamine microparticles was added. The silicon/melamine shell caused a quicker diffusion than in the environment and, thus, passed the light around the objects. Hence, they did no longer cast a shadow. "Disappearance of the shadow indicates successful cloaking."

"Ideal optical invisibility cloaks in air have a drawback," Martin Wegener points out. He conducts research at the KIT Institute of Applied Physics and the KIT Institute of Nanotechnology. "They violate Albert Einstein's theory of relativity that prescribes an upper limit for the speed of light. "In diffuse media, in which light is scattered several times, however, the effective speed of light is reduced. Here, ideal invisibility cloaks can be realized."

The study performed by Wegener and Schittny was funded by the DFG Center for Functional Nanostructures (CFN) and represents pure fundamental research to demonstrate the principle. "We will have to wait a long time for real applications, but with the help of the principle found, it might be possible to produce frosted glass panes for bathrooms with integrated metal bars or sensors against burglary. These sensors or bars would be invisible from the inside and outside," Schittny explains.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Schittny, M. Kadic, T. Buckmann, M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science, 2014; DOI: 10.1126/science.1254524

Cite This Page:

Karlsruhe Institute of Technology. "Optical invisibility cloak built for diffusive media (like fog or milk)." ScienceDaily. ScienceDaily, 6 June 2014. <www.sciencedaily.com/releases/2014/06/140606091421.htm>.
Karlsruhe Institute of Technology. (2014, June 6). Optical invisibility cloak built for diffusive media (like fog or milk). ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/06/140606091421.htm
Karlsruhe Institute of Technology. "Optical invisibility cloak built for diffusive media (like fog or milk)." ScienceDaily. www.sciencedaily.com/releases/2014/06/140606091421.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins