Featured Research

from universities, journals, and other organizations

Innovative millimeter wave communications introduced

Date:
June 10, 2014
Source:
University of Bristol
Summary:
Wireless data connections that exploit millimeter wave radio spectrum (30GHz to 300GHz) are expected to be used in worldwide 5G networks from 2020. Millimeter wave radios use much higher carrier frequencies than those in current systems, such as 4G and Wi-Fi.

This is a snapshot of millimeter wave dynamic beamforming. The algorithm selects the best beam pattern at both the base station and mobile terminal.
Credit: University of Bristol Communication Systems and Networks research group

Wireless data connections that exploit millimetre wave radio spectrum (30GHz to 300GHz) are expected to be used in worldwide 5G networks from 2020. The University of Bristol's Communication Systems and Networks research group has partnered with Bristol start-up Blu Wireless Technology (BWT) to develop this technology and they will demonstrate their innovative work at the Small Cells World Summit in London this week [10-12 June].

Millimetre wave radios use much higher carrier frequencies than those in current systems, such as 4G and Wi-Fi. The University and BWT radios transmit data approximately 50 times faster than the 2.4GHz Wi-Fi standard. At 60GHz there is significantly more unallocated spectrum, and this opens up the possibility of multi-Gigabit data rates to future mobile terminals.

The challenge at 60GHz is how to overcome the additional signal losses. If transmit powers and antenna gains were equal, at 60GHz the received signal would be 1000x weaker than a Wi-Fi signal. To address this challenge, millimetre wave systems need electronically steered high gain antennas to track users as they move within the network.

A demonstration of results from the first phase of work, supported through the West of England Local Enterprise Partnership Regional Growth Fund, will be showcased for the first time at the summit to be held at ExCel London.

Using a newly developed virtual network simulator the team will show how antenna beam steering supports robust point-to-point connections up to 400 metres. For 5G mobile access, the team will demonstrate multi-gigabit beamforming and mobile tracking up to 100 metres from the base station. In both cases beam forming is shown to overcome the harmful effects of blocking trees and buses.

Mark Beach, Professor of Radio Systems Engineering, Department of Electrical and Electronic Engineering, said: "This technology builds on a wealth of knowledge and expertise over the last 25 years in Smart Antenna systems and an in-depth understanding of radiowave propagation. Our rich mix of fundamental research and practical validation at Bristol makes us an ideal partner for industrially relevant projects such as this."

Andrew Nix, Professor of Wireless Communication Systems and Head of the, Department of Electrical and Electronic Engineering, added: "Our sophisticated ray tracing tools have been combined with the University's high performance computing facilities to enable the rapid analysis of complex millimetre wave systems. In particular, our simulators combine detailed channel models with antenna arrays and beam tracking algorithms to dynamically determine user performance in a virtual network."

Henry Nurser, CEO at Blu Wireless Technology, explained: "BWT has developed the Gigabit Digital Baseband necessary for millimetre wave communications to enter the mass market. At the Small Cell World Summit we're presenting some of the details behind our innovative system-level solutions, how this can be applied to solve the total cost of ownership (TCO) problems associated with backhaul for small cells and why Europe needs to re-think regulations for outdoor 60GHz networks."

A video demonstrating the joint research on mmWave Gigabit communications by the University of Bristol and BluWireless Technology is available on YouTube at https://www.youtube.com/watch?v=FifanCKhF10


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Cite This Page:

University of Bristol. "Innovative millimeter wave communications introduced." ScienceDaily. ScienceDaily, 10 June 2014. <www.sciencedaily.com/releases/2014/06/140610122016.htm>.
University of Bristol. (2014, June 10). Innovative millimeter wave communications introduced. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/06/140610122016.htm
University of Bristol. "Innovative millimeter wave communications introduced." ScienceDaily. www.sciencedaily.com/releases/2014/06/140610122016.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins