Featured Research

from universities, journals, and other organizations

New sensor to detect harmful bacteria on food industry surfaces

Date:
June 11, 2014
Source:
University of Southampton
Summary:
A new device designed to sample and detect foodborne bacteria is being trialled by scientists. The team is developing a sensor capable of collecting and detecting Listeria monocytogenes on food industry surfaces, thereby preventing contaminated products from entering the market. Listeria monocytogenes is a pathogen that causes listeriosis, an infection with symptoms of fever, vomiting and diarrhea, that can spread to other parts of the body and lead to more serious complications, like meningitis.

Back row (left to right): Prof Bill Keevil (University of Southampton, UK) Fernando Lorenzo (Betelgeux, Spain); José Belenguer (ainia, Spain) Middle: Sonia Porta (ainia, Spain); Shobitha Sundararajan (Photek, UK). Front: Martin Ingle (Photek, UK); Doctor Salomé Gião (University of Southampton, UK); Niamh Gilmartin (DCU, Ireland).
Credit: Image courtesy of University of Southampton

A new device designed to sample and detect foodborne bacteria is being trialled by scientists at the University of Southampton.

The Biolisme project is using research from the University to develop a sensor capable of collecting and detecting Listeria monocytogenes on food industry surfaces, thereby preventing contaminated products from entering the market.

Listeria monocytogenes is a pathogen that causes listeriosis, an infection with symptoms of fever, vomiting and diarrhoea, that can spread to other parts of the body and lead to more serious complications, like meningitis.

Transmitted by ready-to-eat foods, such as milk, cheese, vegetables, raw and smoked fish, meat and cold cuts, Listeria monocytogenes has the highest hospitalisation (92 per cent) and death (18 per cent) rate among all foodborne pathogens. Listeriosis mainly affects pregnant women, new-born children, the elderly and people with weakened immune systems.

Current techniques to detect the bacteria take days of testing in labs, but the new device aims to collect and detect the pathogen on location within three to four hours. This early and rapid detection can avoid the cross contamination of ready-to-eat food products.

Traditional methods of testing, where sample cells are cultivated in labs, are also flawed. 'Stressed' cells will not grow in cultures (and will therefore produce negative results) despite the bacteria being present, live and potentially harmful.

Alternative techniques, based on molecular methods, will detect all cell types, but don't differentiate between live and harmless dead cells, which can remain after disinfection.

The new device is designed to sample single cells and biofilms -- groups of microorganisms where cells stick together on surfaces. Compressed air and water is used to remove the cells before they are introduced to an antibody. If Listeria monocytogenes is present, cells react with the antibody to produce a florescent signal, which is detected by a special camera.

Doctor Salomé Gião and Professor Bill Keevil from Southampton's Centre for Biological Science Unit have been studying Listeria monocytogenes biofilms under different conditions and will be testing the new prototype. "We researched biofilms under different stresses to find the optimum pressure to remove cells from different surfaces, without disrupting the cells themselves," says Dr Gião. "We also found that biofilms can form on surfaces even if they are covered in tap water.

"The scientific research we have carried out at the University of Southampton has been used by our Biolisme project partners to develop a device which will have major implications for the food industry. By making the process simpler we hope that testing will be conducted more frequently, thereby reducing the chance of infected food having to be recalled or making its way to the consumer."

The prototype sensor has been finalized in France and field trials are now underway to test the device before it is demonstrated in food factories.

José Belenguer Ballester, from project partner ainia centro tecnológico, added: "Biolisme has raised the expectations of food business operators because the devices being developed will allow rapid assessment of the cleanliness of manufacturing plants."


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "New sensor to detect harmful bacteria on food industry surfaces." ScienceDaily. ScienceDaily, 11 June 2014. <www.sciencedaily.com/releases/2014/06/140611093348.htm>.
University of Southampton. (2014, June 11). New sensor to detect harmful bacteria on food industry surfaces. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/06/140611093348.htm
University of Southampton. "New sensor to detect harmful bacteria on food industry surfaces." ScienceDaily. www.sciencedaily.com/releases/2014/06/140611093348.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins