Featured Research

from universities, journals, and other organizations

New sensor to detect harmful bacteria on food industry surfaces

Date:
June 11, 2014
Source:
University of Southampton
Summary:
A new device designed to sample and detect foodborne bacteria is being trialled by scientists. The team is developing a sensor capable of collecting and detecting Listeria monocytogenes on food industry surfaces, thereby preventing contaminated products from entering the market. Listeria monocytogenes is a pathogen that causes listeriosis, an infection with symptoms of fever, vomiting and diarrhea, that can spread to other parts of the body and lead to more serious complications, like meningitis.

Back row (left to right): Prof Bill Keevil (University of Southampton, UK) Fernando Lorenzo (Betelgeux, Spain); José Belenguer (ainia, Spain) Middle: Sonia Porta (ainia, Spain); Shobitha Sundararajan (Photek, UK). Front: Martin Ingle (Photek, UK); Doctor Salomé Gião (University of Southampton, UK); Niamh Gilmartin (DCU, Ireland).
Credit: Image courtesy of University of Southampton

A new device designed to sample and detect foodborne bacteria is being trialled by scientists at the University of Southampton.

Related Articles


The Biolisme project is using research from the University to develop a sensor capable of collecting and detecting Listeria monocytogenes on food industry surfaces, thereby preventing contaminated products from entering the market.

Listeria monocytogenes is a pathogen that causes listeriosis, an infection with symptoms of fever, vomiting and diarrhoea, that can spread to other parts of the body and lead to more serious complications, like meningitis.

Transmitted by ready-to-eat foods, such as milk, cheese, vegetables, raw and smoked fish, meat and cold cuts, Listeria monocytogenes has the highest hospitalisation (92 per cent) and death (18 per cent) rate among all foodborne pathogens. Listeriosis mainly affects pregnant women, new-born children, the elderly and people with weakened immune systems.

Current techniques to detect the bacteria take days of testing in labs, but the new device aims to collect and detect the pathogen on location within three to four hours. This early and rapid detection can avoid the cross contamination of ready-to-eat food products.

Traditional methods of testing, where sample cells are cultivated in labs, are also flawed. 'Stressed' cells will not grow in cultures (and will therefore produce negative results) despite the bacteria being present, live and potentially harmful.

Alternative techniques, based on molecular methods, will detect all cell types, but don't differentiate between live and harmless dead cells, which can remain after disinfection.

The new device is designed to sample single cells and biofilms -- groups of microorganisms where cells stick together on surfaces. Compressed air and water is used to remove the cells before they are introduced to an antibody. If Listeria monocytogenes is present, cells react with the antibody to produce a florescent signal, which is detected by a special camera.

Doctor Salomé Gião and Professor Bill Keevil from Southampton's Centre for Biological Science Unit have been studying Listeria monocytogenes biofilms under different conditions and will be testing the new prototype. "We researched biofilms under different stresses to find the optimum pressure to remove cells from different surfaces, without disrupting the cells themselves," says Dr Gião. "We also found that biofilms can form on surfaces even if they are covered in tap water.

"The scientific research we have carried out at the University of Southampton has been used by our Biolisme project partners to develop a device which will have major implications for the food industry. By making the process simpler we hope that testing will be conducted more frequently, thereby reducing the chance of infected food having to be recalled or making its way to the consumer."

The prototype sensor has been finalized in France and field trials are now underway to test the device before it is demonstrated in food factories.

José Belenguer Ballester, from project partner ainia centro tecnológico, added: "Biolisme has raised the expectations of food business operators because the devices being developed will allow rapid assessment of the cleanliness of manufacturing plants."


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "New sensor to detect harmful bacteria on food industry surfaces." ScienceDaily. ScienceDaily, 11 June 2014. <www.sciencedaily.com/releases/2014/06/140611093348.htm>.
University of Southampton. (2014, June 11). New sensor to detect harmful bacteria on food industry surfaces. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/06/140611093348.htm
University of Southampton. "New sensor to detect harmful bacteria on food industry surfaces." ScienceDaily. www.sciencedaily.com/releases/2014/06/140611093348.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins