Featured Research

from universities, journals, and other organizations

Nanoscale composites improve MRI: Magnetic particles merged to detect, fight disease

Date:
June 16, 2014
Source:
Rice University
Summary:
Submicrometer particles that contain even smaller particles of iron oxide could make magnetic resonance imaging a far more powerful tool to detect and fight disease. Medical researchers are creating composite particles that can be injected into patients and guided by magnetic fields. Once in position, the particles may be heated to kill malignant tissues or trigger the release of drugs at the site. The "nanoconstructs" should fully degrade and leave the body within a few days, they reported.

Nanoconstructs that contain iron oxide particles could make magnetic resonance imaging a far more powerful tool to detect and fight disease.
Credit: Illustration by Ayrat Gizzatov

Submicroscopic particles that contain even smaller particles of iron oxide could make magnetic resonance imaging (MRI) a far more powerful tool to detect and fight disease.

Scientists at Rice University and The Methodist Hospital Research Institute (TMHRI) led an international team of researchers in creating composite particles that can be injected into patients and guided by magnetic fields. Once in position, the particles may be heated to kill malignant tissues or trigger the release of drugs at the site.

The "nanoconstructs" should fully degrade and leave the body within a few days, they reported.

The research appears online in the journal Advanced Functional Materials.

The team led by Rice chemist Lon Wilson and TMHRI scientist Paolo Decuzzi was searching for a way to overcome the challenges presented by iron oxide particles that are good at some things but not others, depending on their size.

Iron oxide particles have many excellent qualities: They can be manipulated with magnets, provide excellent contrast under MRI, create heat when triggered and degrade quickly. But they can't do all that at once. The team needed a way to decouple the functions from their sizes.

The answer was to package thousands of iron oxide particles -- with magnetic cores as small as 5 nanometers across -- inside larger particles.

The researchers made two such nanoconstructs, embedding iron oxide particles in silicon mesoporous particles (SiMPs) and discoidal polymeric nanoconstructs (DPNs). They knew from previous research that submicron-sized SiMPs and DPNs naturally accumulate within the tumor's blood vessels.

Nanoconstructs that contain iron oxide particles could make magnetic resonance imaging a far more powerful tool to detect and fight disease. Illustration by Ayrat Gizzatov

Iron oxide enhances the ability to position and hold the particles in place with magnets, said lead author and Rice graduate student Ayrat Gizzatov. "They get attracted by the magnet, and that induces another dipole-dipole magnetic interaction among the particles and increases their interparticle communication mechanism," he said.

Tests showed iron oxide particles made the nanoconstructs 10 times better than traditional contrast agents with what amounted to significantly lower doses of iron than used in current practice.

The new research also showed that, as a general principle, confining MRI contrast agents (like iron oxide) in geometric structures enhances their relaxivity -- the property that makes the agents appear in MRI images. (The shorter the relaxation time, the greater the contrast in the image.)

While the particles are too big to target specific proteins, Gizzatov said it might also be possible to modify them with elements that will increase their accumulation in tumors.

Co-authors are Adem Guven of Rice; Jaehong Key, Santosh Aryal, Jeyarama Ananta, Xuewu Liu and Meng Zhong, all of TMHRI; Anna Lisa Palange and Daniele Di Mascolo of TMHRI and the University of Magna Graecia, Italy; Matteo Fasano and Antonio Cervadoro of TMHRI and the University of Turin, Italy; Cinzia Stigliano of TMHRI and the University of Bari, Italy; Eliodoro Chiavazzo and Pietro Asinari of the University of Turin; and Mauro Ferrari of Weill Cornell Medical College, New York.

The Cancer Prevention and Research Institute of Texas, the National Institutes of Health, the Welch Foundation, the Interpolytechnic Doctoral School of Turin, the Italian Ministry of Research, the Doctoral School of the University of Magna Graecia, the European Social Fund and the Regione Calabria supported the research.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ayrat Gizzatov, Jaehong Key, Santosh Aryal, Jeyarama Ananta, Antonio Cervadoro, Anna Lisa Palange, Matteo Fasano, Cinzia Stigliano, Meng Zhong, Daniele Di Mascolo, Adem Guven, Eliodoro Chiavazzo, Pietro Asinari, Xuewu Liu, Mauro Ferrari, Lon J. Wilson, Paolo Decuzzi. Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014; DOI: 10.1002/adfm.201400653

Cite This Page:

Rice University. "Nanoscale composites improve MRI: Magnetic particles merged to detect, fight disease." ScienceDaily. ScienceDaily, 16 June 2014. <www.sciencedaily.com/releases/2014/06/140616093615.htm>.
Rice University. (2014, June 16). Nanoscale composites improve MRI: Magnetic particles merged to detect, fight disease. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/06/140616093615.htm
Rice University. "Nanoscale composites improve MRI: Magnetic particles merged to detect, fight disease." ScienceDaily. www.sciencedaily.com/releases/2014/06/140616093615.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WHO Calls for Ban on E-Cigarette Sales to Minors

WHO Calls for Ban on E-Cigarette Sales to Minors

AFP (Aug. 26, 2014) The World Health Organization called Tuesday on governments should ban the sale of e-cigarettes to minors, warning that they pose a "serious threat" to foetuses and young people. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Newsy (Aug. 26, 2014) A new study found fewer deaths from prescription drug overdoses in states that have legalized medical marijuana. But experts disagree on the results. Video provided by Newsy
Powered by NewsLook.com
Official: British Ebola Sufferer Receiving Experimental Drug

Official: British Ebola Sufferer Receiving Experimental Drug

AFP (Aug. 26, 2014) A British nurse infected with Ebola while working in Sierra Leone is being given the same experimental drug used on two US missionaries who have recovered for the disease, doctors in London say. Duration: 00:44 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins