Featured Research

from universities, journals, and other organizations

Improved method for isotope enrichment could secure a vital global commodity

Date:
June 29, 2014
Source:
University of Texas at Austin
Summary:
Researchers have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.

This is a still frame from an artist's animated rendering of the MAGIS Device (magnetically activated and guided isotope separation). To begin the MAGIS process, unpurified ore is vaporized and enters an optical pumping region where a one-watt laser (red beam) tuned to a specific wavelength magnetizes only the particles of the desired isotope so that they are repelled by a magnetic field. The magnetized and unmagnetized particles enter a curved tunnel lined with permanent magnets, called a wave guide. The particles must follow the curve to make it to the collector at the end, but can only do so if repelled by the magnetic field. Since only the particles of one isotope are magnetized (blue dots), only those particles make the trip and end up in the collector. The MAGIS method was developed by Mark Raizen, Tom Mazur and Bruce Klappauf. The full animation can be viewed at https://www.youtube.com/watch?v=zIRi-7AxFAM.
Credit: Copyright Marianna Grenadier, College of Natural Sciences, The University of Texas at Austin.

Researchers at The University of Texas at Austin have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power, as reported this week in the journal Nature Physics. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.

A less expensive, domestic source of stable isotopes could ensure continuation of current applications while opening up opportunities for new medical therapies and fundamental scientific research.

Chemical elements often exist in nature as a blend of different variants called isotopes. To be useful in most applications, a single isotope has to be enriched, or separated out from the rest.

A combination of factors has created a looming shortage of some of the world's most expensive but useful stable isotopes.

Last year, the Government Accountability Office released a report warning that there may soon be a shortage of lithium-7, a critical component of many nuclear power reactors. Production of lithium-7 was banned in the U.S. because of environmental concerns, and it's unclear whether the current sources, in China and Russia, will continue meeting global demand.

One of the major sources of molybdenum-99, essential for medical imaging in tens of millions of heart, kidney and breast procedures each year, is an aging nuclear reactor in Canada that's expected to cease operations in 2016. Other valuable isotopes are produced by Cold War era machines known as calutrons operating in Russia. Their extreme age, high operating costs and regional concentration further threaten global supply.

"Isotopes are among the most expensive commodities on Earth," says Mark Raizen, professor of physics in The University of Texas at Austin's College of Natural Sciences and author on the study. "One ounce of a stable isotope that needs the calutron to separate it can run around $3 million. That's roughly 2,000 times the price of gold. And that has held back certain medical therapies."

Unlike the calutron, which requires huge amounts of energy to maintain a magnetic field with electromagnets, the new method for enriching stable isotopes, called MAGIS (magnetically activated and guided isotope separation), needs little energy due to its use of low-powered lasers and permanent magnets. It also has less potential for environmental effects than the chemical process used in producing lithium-7, which has been linked to mercury contamination.

Nuclear medicine in particular could benefit from the new method, the researchers say. Many stable isotopes are precursors to the short-lived radioisotopes used in medical imaging, cancer therapies and nutritional diagnostics.

The new method also has the potential to enhance our national security. The researchers used the method to enrich lithium-7, crucial to the operation of most nuclear reactors. The U.S. depends on the supply of lithium-7 from Russia and China, and a disruption could cause the shutdown of reactors. Other isotopes can be used to detect dangerous nuclear materials arriving at U.S. ports.

Raizen's co-authors on the paper are Tom Mazur, a Ph.D. student at the university; and Bruce Klappauf, a software developer at Enthought and a former senior research scientist at UT Austin.

Now, Raizen's top goal is getting this technology out of the lab and into the world. The MAGIS invention has been issued a U.S. patent, which is owned by The University of Texas at Austin, with Raizen and Klappauf as inventors.

Raizen plans to create a nonprofit foundation to license the technology.

"I believe this is world-changing in a way that is unique among all the projects that I have done. And I do feel passionately about it," said Raizen. "There are many potential uses of isotopes that we don't even know yet. But they've been held back because the price has been so high, or it's been unavailable. That will be one of the missions of the foundation -- to explore and develop isotopes to benefit humanity."

Some critics have raised concerns about the potential for terrorists or rogue states to use MAGIS to enrich uranium for nuclear weapons. Raizen believes these concerns are unfounded given uranium's unique chemical characteristics.

View an animation of the MAGIS device in action and read more about how it works here: https://www.youtube.com/watch?v=zIRi-7AxFAM.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas R. Mazur, Bruce Klappauf, Mark G. Raizen. Demonstration of magnetically activated and guided isotope separation. Nature Physics, 2014; DOI: 10.1038/nphys3013

Cite This Page:

University of Texas at Austin. "Improved method for isotope enrichment could secure a vital global commodity." ScienceDaily. ScienceDaily, 29 June 2014. <www.sciencedaily.com/releases/2014/06/140629142043.htm>.
University of Texas at Austin. (2014, June 29). Improved method for isotope enrichment could secure a vital global commodity. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2014/06/140629142043.htm
University of Texas at Austin. "Improved method for isotope enrichment could secure a vital global commodity." ScienceDaily. www.sciencedaily.com/releases/2014/06/140629142043.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins