Featured Research

from universities, journals, and other organizations

Overcoming light scattering: New optical system sees deeper inside tissue

Date:
July 2, 2014
Source:
The Optical Society
Summary:
Optical imaging could become even more valuable if researchers could find a way for light to penetrate all the way through the body's tissues. Currently, passing through a fraction of an inch of skin is enough to scatter the light and scramble the image. Now researchers have developed a single-pixel optical system based on compressive sensing that can overcome the fundamental limitations imposed by this scattering.

Researchers placed an image of the Cheshire Cat behind a layer of material that hides the object. A standard multi-pixel camera cannot see the cat because the material in front scatters the light (left). However, by using a single-pixel optical system based on compressive sensing, the researchers could overcome the imaging limitations traditionally imposed by scattering to recover fine details about the hidden object (right).
Credit: Optics Express

Optical imaging methods are rapidly becoming essential tools in biomedical science because they're noninvasive, fast, cost-efficient and pose no health risks since they don't use ionizing radiation. These methods could become even more valuable if researchers could find a way for optical light to penetrate all the way through the body's tissues. With today's technology, even passing through a fraction of an inch of skin is enough to scatter the light and scramble the image. Now a team of researchers from Spain's Jaume I University (UJI) and the University of Valčncia has developed a single-pixel optical system based on compressive sensing that can overcome the fundamental limitations imposed by this scattering.

The work was published today in The Optical Society's (OSA) open-access journal Optics Express.

"In the diagnostic realm within the past few years, we've witnessed the way optical imaging has helped clinicians detect and evaluate suspicious lesions," said Jesús Lancis, the paper's co-author and a researcher in the Photonics Research Group at UJI. "The elephant in the room, however, is the question of the short penetration depth of light within tissue compared to ultrasound or x-ray technologies. Current knowledge is insufficient for early detection of small lesions located deeper than a millimeter beneath the surface of the mucosa."

"Our goal is to see deeper inside tissue," he added.

To achieve this, the team used an off-the-shelf digital micromirror array from a commercial video projector to create a set of microstructured light patterns that are sequentially superimposed onto a sample. They then measure the transmitted energy with a photodetector that can sense the presence or absence of light, but has no spatial resolution. Then they apply a signal processing technique called compressive sensing, which is used to compress large data files as they are measured. This allows them to reconstruct the image.

One of the most surprising aspects of the team's work is that they use essentially a single-pixel sensor to capture the images. While most people think that more pixels result in better image quality, there are some cases where this isn't true, Lancis said. In low-light imaging, for instance, it's better to integrate all available light into a single sensor. If the light is split into millions of pixels, each sensor receives a tiny fraction of light, creating noise and destroying the image.

"Something similar happens when you try to transmit images through scattering media," Lancis said. "When we use a conventional digital camera to get an image, we only see the familiar noisy pattern known as 'speckle.' In compressive imaging, since we aren't using pixelated sensors, it should be less sensitive to light scrambling and enable transmission of images through scattering."

Also notable, the team's technique could operate through dynamic scattering. "Most scattering media of interest, like biological tissue, are dynamic in the sense that the scatter centers continuously change their positions with time -- meaning that the speckle patterns are 'in motion.' This is ideal for some applications because monitoring the changes of the speckle can reveal information about the sample, but the drawback is that it's a major nuisance to transmit or get images," Lancis pointed out. "Our technique, however, requires no calibration of the medium, and its fluctuations during the sensing stage don't limit imaging ability."

What's ahead for the team? "Our next goal is to break the barriers of light penetration depth inside a scattering medium with the state-of-the-art megapixel-programmable spatial light modulators used in consumer electronics," Lancis says. To do this, they'll need to demonstrate that their technique works even when the sample is embedded inside the tissue.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrique Tajahuerce, Vicente Durán, Pere Clemente, Esther Irles, Fernando Soldevila, Pedro Andrés, Jesús Lancis. Image transmission through dynamic scattering media by single-pixel photodetection. Optics Express, 2014; 22 (14): 16945 DOI: 10.1364/OE.22.016945

Cite This Page:

The Optical Society. "Overcoming light scattering: New optical system sees deeper inside tissue." ScienceDaily. ScienceDaily, 2 July 2014. <www.sciencedaily.com/releases/2014/07/140702111031.htm>.
The Optical Society. (2014, July 2). Overcoming light scattering: New optical system sees deeper inside tissue. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/07/140702111031.htm
The Optical Society. "Overcoming light scattering: New optical system sees deeper inside tissue." ScienceDaily. www.sciencedaily.com/releases/2014/07/140702111031.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins