Featured Research

from universities, journals, and other organizations

Power consumption of robot joints could be 40% less

Date:
July 3, 2014
Source:
University of the Basque Country
Summary:
Robots are being increasingly used in industrial processes because of their ability to carry out repetitive tasks in a precise, reliable way. Right now, digital controllers are used to drive the motors of the joints of these robots. And it is no easy task developing and programming these controllers so that they will work efficiently. Scientists have developed a way of propelling these systems or robots in a more energy-efficient way and have shown, on a laboratory level, that in some cases energy consumption can be cut by up to 40%.

Robots are being increasingly used in industrial processes because of their ability to carry out repetitive tasks in a precise, reliable way. Right now, digital controllers are used to drive the motors of the joints of these robots. And it is no easy task developing and programming these controllers so that they will work efficiently. Unai Ugalde-Olea, lecturer in the Department of Electronics Technology of the UPV/EHU, has analysed a way of propelling these systems or robots in a more energy-efficient way and has shown, on a laboratory level, that in some cases energy consumption can be cut by up to 40%. The study has been published in the journal Control Engineering Practice.

Related Articles


Let us imagine, for a moment, the arm of a robot that lifts a cup of coffee to its "lips" over and over again. The joint of this robotic arm needs a certain flexibility plus an electric motor to drive the upward and downward movements. So orders have to be sent to the motor so that the joint can perform the corresponding movements. "The motors need to receive orders constantly. In fact, the motor has to know at all times what angle its axis has to be at. However, current digital controllers only issue orders at specific moments (in discrete time); they can be described as issuing orders by means of pulses: first an order, then a brief pause, then another order, another brief pause... and so on," explained Unai Ugalde, lecturer in the UPV/EHU's Department of Electronics Technology. The UPV/EHU researcher has in fact come up with a new proposal for this time interval in which there is no order.

On the whole, in industry, as long as no fresh order is issued, the previous order remains valid. In other words, until the new control order arrives, the previous one is executed. "In this study we have concluded that this way of working can be changed. We have used a polynomial function based on two values (that correspond to the two most recent orders) to reconstruct the process in some way," explained Ugalde. "This is in fact what is new about the research," he added.

Energy savings

Until now, the previous order was taken into account until the new control order was given; in other words, what in the literature on control systems is known as zero-order reconstruction was used. However, this is not the only option, and this research work has in fact focussed on this aspect. Specifically, the researcher's aim was to study and verify, experimentally, the advantages that could be gained from taking both orders into consideration, the last one and the penultimate one. When the reconstruction is linear on a constant, not flat slope, it is known as fractional-order reconstruction, and despite being well known, it has not been taken into consideration very much until now.

Ugalde has found that the polynomial or fractional order reconstructions may be of interest in flexible joints, as in the case of robot elbows and wrists. In fact, lab tests have shown that "the energy needed to drive the motors is considerably reduced. In ideal cases this reduction could be up to 40% without losing precision in the anticipated path," explained Ugalde.

These tests were carried out in the lab and on a small-scale prototype, in other words, in ideal conditions. "The next step would be to check whether it is possible to achieve similar savings on an industrial scale. In any case, even if the savings are lower, in view of the cost of electrical power, it would be a significant step forward," added the UPV/EHU researcher.


Story Source:

The above story is based on materials provided by University of the Basque Country. Note: Materials may be edited for content and length.


Journal Reference:

  1. Unai Ugalde, Rafael Bαrcena, Koldo Basterretxea. Generalized sampled-data holds to reduce energy consumption in resonant systems. Control Engineering Practice, 2014; 26: 28 DOI: 10.1016/j.conengprac.2014.01.006

Cite This Page:

University of the Basque Country. "Power consumption of robot joints could be 40% less." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703092005.htm>.
University of the Basque Country. (2014, July 3). Power consumption of robot joints could be 40% less. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/07/140703092005.htm
University of the Basque Country. "Power consumption of robot joints could be 40% less." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703092005.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

No, A Google Exec Did Not Predict An Internet Apocalypse

No, A Google Exec Did Not Predict An Internet Apocalypse

Newsy (Jan. 24, 2015) — Earlier this week, a Google exec made headlines for saying "the Internet will disappear," but that doesn&apos;t quite mean what it sounds like. Video provided by Newsy
Powered by NewsLook.com
Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Newsy (Jan. 23, 2015) — Tim Cook&apos;s total compensation more than doubled in 2014 to $9.2 million, but his pay was still less than four other Apple executives. Video provided by Newsy
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins