Featured Research

from universities, journals, and other organizations

Protein found that pushes breast cancer cells to metastasize

Date:
July 9, 2014
Source:
Rockefeller University
Summary:
Using an innovative tool that captures heretofore hidden ways that cells are regulated, scientists have identified a protein that makes breast cancer cells more likely to metastasize. What's more, the protein appears to trigger cancer's spread in part by blocking two other proteins that are normally linked to neurodegeneration, a finding that suggests these two disease processes could have unexpected ties.

Using an innovative tool that captures heretofore hidden ways that cells are regulated, scientists at Rockefeller University have identified a protein that makes breast cancer cells more likely to metastasize.

What's more, the protein appears to trigger cancer's spread in part by blocking two other proteins that are normally linked to neurodegeneration, a finding that suggests these two disease processes could have unexpected ties.

The study, which appears in the July 10 issue of Nature, points to the possibility of new cancer therapies that target this "master regulator" that helps set metastasis in motion.

"Although the research is in its very early days, if we learn more about how this regulation works, we may in the future be able to generate drugs that prevent this protein from triggering metastatic disease," says Sohail F. Tavazoie, senior author on the study. Tavazoie is Leon Hess Assistant Professor and head of the Vincent Meyer Laboratory of Systems Cancer Biology at Rockefeller.

During the study, Tavazoie and his colleagues used technology previously developed by first author Hani Goodarzi and co-author Saeed Tavazoie, a professor at Columbia University, to measure a new layer of regulation in cancer cells. In order to understand what triggers cells to become malignant, scientists often look at sequences of DNA, searching for genes which are turned on or off in cancerous cells. But in recent years, they've uncovered many new mechanisms that govern cell activity, including some that act on RNA, the genetic material that helps cells make proteins using instructions encoded in DNA. The special strength of Goodarzi and Saeed Tavazoie's tool is that it doesn't look simply at the sequence of RNA-it also looks at its shape.

It turns out, the shape of an RNA molecule matters. Specifically, some segments of messenger RNA form hairpin loops, which create sites for key proteins to bind to and regulate that RNA -- telling the cell to destroy it, for instance. "These structural differences help determine RNA's fate, by exposing or hiding the binding sites for those key proteins," says Goodarzi.

So Goodarzi and Saeed Tavazoie developed a computer algorithm that scans samples of cancer cells and identifies patterns in the shapes and sequences of RNA. In the current study, the authors applied this algorithm to breast cancer cells. In cells prone to metastasis, for example, the scientists found certain RNA hairpin loops that were overrepresented in the sequences of RNAs targeted for destruction. They then identified a protein that binds to those hairpin sequences -- TARBP2, known to play a role in the formation of small RNAs known as microRNAs. But here, it appears TARBP2 can also act as a "master regulator" of RNA itself, by binding to multiple sites and causing a suite of changes that lead to metastasis -- including the destruction of the RNAs that carry those key binding sites. Indeed, they found that TARBP2 is overexpressed in cells prone to metastasizing, as well as in metastatic human breast tumors themselves.

To determine how TARBP2 carries out its effects, the researchers looked at which genes appear to be downregulated in metastatic cell lines, reasoning that TARBP2 may block these disease suppressors. They made two surprising discoveries -- APP, a protein linked to Alzheimer's disease, and ZNF395, which is associated with Huntington's disease, are both downregulated by TARBP2. Cells prone to metastasis showed higher levels of TARBP2 and lower levels of APP and ZNF395; in cancer cells that tend not to spread throughout the body, the opposite was true.

"This was a surprising finding, because these genes are normally associated with neurodegeneration are now implicated in breast cancer metastasis and progression," says Tavazoie. "It's interesting that these totally disparate disease processes have a potential molecular link. We don't know what that means yet."

In further experiments, they discovered that ZNF395 appears to decrease the expression of genes linked to cancer, while one segment of APP directly inhibits breast cancer's ability to metastasize.

The study raises hopes of new cancer therapies that target this "master regulator," TARBP2. "If we can understand the mechanism by which TARBP2 interacts with RNA, maybe in the future we could generate drugs that prevent it from sitting on RNA structures and shutting down the genes that suppress metastatic disease," says Tavazoie.

Just what these findings say about the relationship between cancer and neurodegeneration -- two of the most common diseases of old age -- is still unclear, he adds. "All we can say here is that APP and ZNF395, besides being associated with neurodegeneration, also seem to play a functional role in the progression of breast cancer. We can't really make any statements about why this is -- it could simply be that breast cancer cells use whatever mechanisms necessary to spread throughout the body, and these genes serve that purpose."

Of course, any future therapies that halt metastasis by blocking TARBP2 will have to sidestep the potential risk of promoting neurodegeneration in the process, cautions Goodarzi. All of that will have to be worked out in the lab, agrees Tavazoie.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hani Goodarzi, Steven Zhang, Colin G. Buss, Lisa Fish, Saeed Tavazoie, Sohail F. Tavazoie. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature, 2014; DOI: 10.1038/nature13466

Cite This Page:

Rockefeller University. "Protein found that pushes breast cancer cells to metastasize." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709151630.htm>.
Rockefeller University. (2014, July 9). Protein found that pushes breast cancer cells to metastasize. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/07/140709151630.htm
Rockefeller University. "Protein found that pushes breast cancer cells to metastasize." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709151630.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins