Featured Research

from universities, journals, and other organizations

Uncertainty gives scientists new confidence in search for novel materials

Date:
July 10, 2014
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
Scientists have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique should quickly be adopted in studies that produce some 30,000 scientific papers per year.

This image shows the results of calculations aimed at determining which of six chemical elements would make the best catalyst for promoting an ammonia synthesis reaction. Researchers at SLAC and Stanford used Density Functional Theory (DFT) to calculate the strength of the bond between nitrogen atoms and the surfaces of the catalysts. The bond strength, plotted on the horizontal axis, is a key factor in determining the reaction speed, plotted on the vertical axis. Based on thousands of these calculations, which yielded a range of results (colored dots) that reveal the uncertainty involved, researchers estimated an 80 percent chance that ruthenium (Ru, in red) will be a better catalyst than iron (Fe, in orange.)
Credit: Andrew Medford and Aleksandra Vojvodic/SUNCAT, Callie Cullum

Scientists at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in the July 11 issue of Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

"Over the past 10 years our ability to calculate the properties of materials and chemicals, such as reactivity and mechanical strength, has increased enormously. It's totally exploded," said Jens Nørskov, a professor at SLAC and Stanford and director of the SUNCAT Center for Interface Science and Catalysis, who led the research.

"As more and more researchers use computer simulations to predict which materials have the interesting properties we're looking for -- part of a process called 'materials by design' ­- knowing the probability for error in these calculations is essential," he said. "It tells us exactly how much confidence we can put in our results."

Nørskov and his colleagues have been at the forefront of developing this approach, using it to find better and cheaper catalysts to speed ammonia synthesis and generate hydrogen gas for fuel, among other things. But the technique they describe in the paper can be broadly applied to all kinds of scientific studies.

Speeding the Material Design Cycle

The set of calculations involved in this study is known as DFT, for Density Functional Theory. It predicts bond energies between atoms based on the principles of quantum mechanics. DFT calculations allow scientists to predict hundreds of chemical and materials properties, from the electronic structures of compounds to density, hardness, optical properties and reactivity.

Because researchers use approximations to simplify the calculations -- otherwise they'd take too much computer time -- each of these calculated material properties could be off by a fairly wide margin.

To estimate the size of those errors, the team applied a statistical method: They calculated each property thousands of times, each time tweaking one of the variables to produce slightly different results. That variation in results represents the possible range of error.

"Even with the estimated uncertainties included, when we compared the calculated properties of different materials we were able to see clear trends," said Andrew J. Medford, a graduate student with SUNCAT and first author of the study. "We could predict, for instance, that ruthenium would be a better catalyst for synthesizing ammonia than cobalt or nickel, and say what the likelihood is of our prediction being right."

An Essential New Tool for Thousands of Studies

DFT calculations are used in the materials genome initiative to search through millions of solids and compounds, and also widely used in drug design, said Kieron Burke, a professor of chemistry and physics at the University of California-Irvine who was not involved in the study.

"There were roughly 30,000 papers published last year using DFT," he said. "I believe the technique they've developed will become absolutely necessary for these kinds of calculations in all fields in a very short period of time."

Thomas Bligaard, a senior staff scientist in charge of theoretical method development at SUNCAT, said the team has a lot of work ahead in implementing these ideas, especially in calculations attempting to make predictions of new phenomena or new functional materials.

Other researchers involved in the study were Jess Wellendorff, Aleksandra Vojvodic, Felix Studt, and Frank Abild-Pedersen of SUNCAT and Karsten W. Jacobsen of the Technical University of Denmark. Funding for the research came from the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Medford et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science, 11 July 2014: Vol. 345 no. 6193 pp. 197-200 DOI: 10.1126/science.1253486

Cite This Page:

DOE/SLAC National Accelerator Laboratory. "Uncertainty gives scientists new confidence in search for novel materials." ScienceDaily. ScienceDaily, 10 July 2014. <www.sciencedaily.com/releases/2014/07/140710141624.htm>.
DOE/SLAC National Accelerator Laboratory. (2014, July 10). Uncertainty gives scientists new confidence in search for novel materials. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/07/140710141624.htm
DOE/SLAC National Accelerator Laboratory. "Uncertainty gives scientists new confidence in search for novel materials." ScienceDaily. www.sciencedaily.com/releases/2014/07/140710141624.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins