Featured Research

from universities, journals, and other organizations

Sophisticated radiation detector designed for broad public use

Date:
July 10, 2014
Source:
Oregon State University
Summary:
Nuclear engineers have developed a small, portable and inexpensive radiation detection device that should help people all over the world better understand the radiation around them, its type and intensity, and whether or not it poses a health risk. The system is a miniaturized gamma ray spectrometer, which means it can measure not only the intensity of radiation but also identify the type of radionuclide that is creating it. Such a system is far more sophisticated than old-fashioned "Geiger counters" that provide only minimal information about the presence and level of radioactivity.

The device was developed in part due to public demand following the nuclear incident in Fukushima, Japan, in 2011, when many regional residents were unsure what level of radiation they were being exposed to and whether their homes, food, environment and drinking water were safe.
Credit: Image courtesy of Oregon State University

Nuclear engineers at Oregon State University have developed a small, portable and inexpensive radiation detection device that should help people all over the world better understand the radiation around them, its type and intensity, and whether or not it poses a health risk.

The device was developed in part due to public demand following the nuclear incident in Fukushima, Japan, in 2011, when many regional residents were unsure what level of radiation they were being exposed to and whether their homes, food, environment and drinking water were safe.

Devices that could provide that type of information were costly and not readily available to the general public, and experts realized there was a demand for improved systems that could provide convenient, accurate information at a low cost. The new system should eventually be available for less than $150.

Findings on the new technology were just published in Nuclear Instruments and Methods in Physics Research, a professional journal. The systems are not yet available for commercial sale.

Beyond the extremely rare occasion of a radiological or nuclear incident, the new technology may also help interested consumers learn more about the world of radiation surrounding us, the constant exposure they receive -- everything from a concrete wall to the air we breathe, soils around us or a granite kitchen counter top -- and how to understand routine radiation exposure as a part of normal life.

"With a device such as this, people will be better able to understand and examine the environment in which they live," said Abi Farsoni, an associate professor of nuclear engineering in the OSU College of Engineering. "Radiation is a natural part of our lives that many people don't understand, but in some cases there's also a need to measure it accurately in case something could be a health concern. This technology will accomplish both those goals."

Of some interest, the researchers said, is that the technology being used in the new device provides measurements of radiation that are not only less expensive but also more efficient and accurate than many existing technologies that cost far more. Because of that, the system may find use not just by consumers but in laboratories and industries around the world that deal with radioactive material. This could include scientific research, medical treatments, emergency response, nuclear power plants or industrial needs.

The system is a miniaturized gamma ray spectrometer, which means it can measure not only the intensity of radiation but also identify the type of radionuclide that is creating it. Such a system is far more sophisticated than old-fashioned "Geiger counters" that provide only minimal information about the presence and level of radioactivity.

"The incident at Fukushima made us realize that many people wanted, but were not able to afford, a simple technology to tell them if their environment, food or water was safe," Farsoni said. "This portable system, smaller than a golf ball, can do that, and it will also have wireless connectivity so it could be used remotely, or connected to the Internet."

The system combines digital electronics with a fairly new type of "scintillation detector" that gives it the virtues of small size, durability, operation at room temperature, good energy resolution, low power consumption and light weight, while being able to measure radiation levels and identify the radionuclides producing them.

Various models may be developed for different needs, researchers said, one of which might be the ability to measure radon gas and check homes with possible concerns for that type of radiation exposure, which can sometimes come from soils, rocks, concrete walls or foundations.

"There are a lot of misconceptions by many people about radioactivity and natural background radiation, and technology of this type may help address some of those issues," Farsoni said. "Sometimes, there are also real concerns, and the device will be able to identify them. And of some importance to us, we want the technology to be very simple and affordable so anyone can obtain and use it."


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. E.M. Becker, A.T. Farsoni. Wireless, low-cost, FPGA-based miniature gamma ray spectrometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014; 761: 99 DOI: 10.1016/j.nima.2014.05.096

Cite This Page:

Oregon State University. "Sophisticated radiation detector designed for broad public use." ScienceDaily. ScienceDaily, 10 July 2014. <www.sciencedaily.com/releases/2014/07/140710151949.htm>.
Oregon State University. (2014, July 10). Sophisticated radiation detector designed for broad public use. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/07/140710151949.htm
Oregon State University. "Sophisticated radiation detector designed for broad public use." ScienceDaily. www.sciencedaily.com/releases/2014/07/140710151949.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins