Featured Research

from universities, journals, and other organizations

New simple setup for X-ray phase contrast

Date:
July 11, 2014
Source:
Technische Universitaet Muenchen
Summary:
X-ray phase-contrast imaging can provide high-quality images of objects with lower radiation dose. But until now these images have been hard to obtain and required special X-ray sources whose properties are only found at particle accelerator facilities. Using a laboratory source with unprecedented brightness, scientists have demonstrated a new approach to get reliable phase contrast with an extremely simple setup.

The scientists used a plastic flower as microscopic object.
Credit: I. Zanette / TUM

X-ray phase-contrast imaging can provide high-quality images of objects with lower radiation dose. But until now these images have been hard to obtain and required special X-ray sources whose properties are typically only found at large particle accelerator facilities. Using a laboratory source with unprecedented brightness, scientists from the Technische Universität München (TUM), the Royal Institute of Technology in Stockholm (KTH) and University College London (UCL) have demonstrated a new approach to get reliable phase contrast with an extremely simple setup.

Related Articles


X-ray phase-contrast imaging is a method that uses the refraction of X-rays through a specimen instead of attenuation resulting from absorption. The images produced with this method are often of much higher quality than those based on absorption. The scientists in the team of Prof. Franz Pfeiffer are particularly interested in developing new approaches for biomedical X-ray imaging and therapy -- including X-ray phase-contrast imaging. One main goal is to make this method available for clinical applications such as diagnosis of cancer or osteoporosis in the future.

In their new study, the scientists have now developed an extremely simple setup to produce X-ray phase-contrast images. The solution to many of their difficulties may seem counter-intuitive: Scramble the X-rays to give them a random structure. These speckles, as they are called in the field, encode a wealth of information on the sample as they travel through it. The scrambled X-rays are collected with a high-resolution X-ray camera, and the information is then extracted in a post-measurement analysis step.

High accuracy and new X-ray source

Using their new technique, the researchers have demonstrated the efficiency and versatility of their approach. "From a single measurement, we obtain an attenuation image, the phase image, but also a dark-field image," explains Dr. Irene Zanette, lead author of the publication. "The phase image can be used to measure accurately the specimen's projected thickness. The dark-field image can be just as important because it maps structures in the specimen too small to be resolved, such as cracks or fibers in materials," she adds.

The source's high brightness is also key to these results. "In the source we used a liquid metal jet as the X-ray-producing target instead of the solid targets normally used in laboratory X-ray sources," says Tunhe Zhou from KTH Stockholm, project partner of the TUM. "This makes it possible to gain the high intensity needed for phase-contrast imaging without damaging the X-ray-producing target." To obtain all images at once, an algorithm scans the speckles and analyzes the minute changes in their shape and position caused by the specimen.

But not all components of the new instrument are products of the latest cutting-edge technology. To scramble the X-rays, "we have found that a simple piece of sandpaper did the job perfectly well," adds Dr. Zanette.

The researchers are already working toward the next steps. "As a single-shot technique, speckle imaging is a perfect candidate for an efficient extension to phase-contrast tomography, which would give a three-dimensional insight into the microstructure of the investigated object," Zanette explains.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, H. M. Hertz. Speckle-Based X-Ray Phase-Contrast and Dark-Field Imaging with a Laboratory Source. Physical Review Letters, 2014; 112 (25) DOI: 10.1103/PhysRevLett.112.253903

Cite This Page:

Technische Universitaet Muenchen. "New simple setup for X-ray phase contrast." ScienceDaily. ScienceDaily, 11 July 2014. <www.sciencedaily.com/releases/2014/07/140711132833.htm>.
Technische Universitaet Muenchen. (2014, July 11). New simple setup for X-ray phase contrast. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/07/140711132833.htm
Technische Universitaet Muenchen. "New simple setup for X-ray phase contrast." ScienceDaily. www.sciencedaily.com/releases/2014/07/140711132833.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) — Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) — The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) — NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins