Featured Research

from universities, journals, and other organizations

Transplanting gene into injured hearts creates biological pacemakers

Date:
July 16, 2014
Source:
Cedars-Sinai Medical Center
Summary:
Cardiologists have developed a minimally invasive gene transplant procedure that changes unspecialized heart cells into “biological pacemaker” cells that keep the heart steadily beating. The laboratory animal research is the result of a dozen years of research with the goal of developing biological treatments for patients with heart rhythm disorders who currently are treated with surgically implanted pacemakers.

Illustration of heart (stock image). A new minimally invasive gene transplant procedure changes unspecialized heart cells into “biological pacemaker” cells that keep the heart steadily beating.
Credit: © adimas / Fotolia

Cardiologists at the Cedars-Sinai Heart Institute have developed a minimally invasive gene transplant procedure that changes unspecialized heart cells into "biological pacemaker" cells that keep the heart steadily beating.

Related Articles


The laboratory animal research, published online and in today's print edition of the peer-reviewed journal Science Translational Medicine, is the result of a dozen years of research with the goal of developing biological treatments for patients with heart rhythm disorders who currently are treated with surgically implanted pacemakers. In the United States, an estimated 300,000 patients receive pacemakers every year.

"We have been able, for the first time, to create a biological pacemaker using minimally invasive methods and to show that the biological pacemaker supports the demands of daily life," said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute, who led the research team. "We also are the first to reprogram a heart cell in a living animal in order to effectively cure a disease."

These laboratory findings could lead to clinical trials for humans who have heart rhythm disorders but who suffer side effects, such as infection of the leads that connect the device to the heart, from implanted mechanical pacemakers.

Eugenio Cingolani, MD, the director of the Heart Institute's Cardiogenetics-Familial Arrhythmia Clinic who worked with Marbán on biological pacemaker research team, said that in the future, pacemaker cells also could help infants born with congenital heart block.

"Babies still in the womb cannot have a pacemaker, but we hope to work with fetal medicine specialists to create a life-saving catheter-based treatment for infants diagnosed with congenital heart block," Cingolani said. "It is possible that one day, we might be able to save lives by replacing hardware with an injection of genes."

"This work by Dr. Marbán and his team heralds a new era of gene therapy, in which genes are used not only to correct a deficiency disorder, but to actually turn one kind of cell into another type," said Shlomo Melmed, dean of the Cedars-Sinai faculty and the Helene A. and Philip E. Hixson Distinguished Chair in Investigative Medicine.

In the study, laboratory pigs with complete heart block were injected with the gene called TBX18 during a minimally invasive catheter procedure. On the second day after the gene was delivered to the animals' hearts, pigs who received the gene had significantly faster heartbeats than pigs who did not receive the gene. The stronger heartbeat persisted for the duration of the 14-day study.

"Originally, we thought that biological pacemaker cells could be a temporary bridge therapy for patients who had an infection in the implanted pacemaker area," Marbán said. "These results show us that with more research, we might be able to develop a long-lasting biological treatment for patients."

If future research is successful, Marbán said, the procedure could be ready for human clinical studies in about three years.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y.-F. Hu, J. F. Dawkins, H. C. Cho, E. Marban, E. Cingolani. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Science Translational Medicine, 2014; 6 (245): 245ra94 DOI: 10.1126/scitranslmed.3008681

Cite This Page:

Cedars-Sinai Medical Center. "Transplanting gene into injured hearts creates biological pacemakers." ScienceDaily. ScienceDaily, 16 July 2014. <www.sciencedaily.com/releases/2014/07/140716141036.htm>.
Cedars-Sinai Medical Center. (2014, July 16). Transplanting gene into injured hearts creates biological pacemakers. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/07/140716141036.htm
Cedars-Sinai Medical Center. "Transplanting gene into injured hearts creates biological pacemakers." ScienceDaily. www.sciencedaily.com/releases/2014/07/140716141036.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins