Featured Research

from universities, journals, and other organizations

Nature's strongest glue comes unstuck

Date:
July 18, 2014
Source:
Newcastle University
Summary:
Over a 150 years since it was first described by Darwin, scientists are finally uncovering the secrets behind the super strength of barnacle glue. Still far better than anything we have been able to develop synthetically, barnacle glue -- or cement -- sticks to any surface, under any conditions. But exactly how this superglue of superglues works has remained a mystery -- until now.

Over a 150 years since it was first described by Darwin, scientists are finally uncovering the secrets behind the super strength of barnacle glue.

Related Articles


Still far better than anything we have been able to develop synthetically, barnacle glue -- or cement -- sticks to any surface, under any conditions.

But exactly how this superglue of superglues works has remained a mystery -- until now.

An international team of scientists led by Newcastle University, UK, and funded by the US Office of Naval Research, have shown for the first time that barnacle larvae release an oily droplet to clear the water from surfaces before sticking down using a phosphoprotein adhesive.

Publishing their findings this week in the academic journal Nature Communications, author Dr Nick Aldred says the findings could pave the way for the development of novel synthetic bioadhesives for use in medical implants and micro-electronics. The research will also be important in the production of new anti-fouling coatings for ships.

"It's over 150 years since Darwin first described the cement glands of barnacle larvae and little work has been done since then," says Dr Aldred, a research associate in the School of Marine Science and Technology at Newcastle University, one of the world's leading institutions in this field of research.

"We've known for a while there are two components to the bioadhesive but until now, it was thought they behaved a bit like some of the synthetic glues -- mixing before hardening. But that still left the question, how does the glue contact the surface in the first place if it is already covered with water? This is one of the key hurdles to developing glues for underwater applications.

"Advances in imaging techniques, such as 2-photon microscopy, have allowed us to observe the adhesion process and characterise the two components. We now know that these two substances play very different roles -- one clearing water from the surface and the other cementing the barnacle down.

"The ocean is a complex mixture of dissolved ions, the pH varies significantly across geographical areas and, obviously, it's wet. Yet despite these hostile conditions, barnacle glue is able to withstand the test of time.

"It's an incredibly clever natural solution to this problem of how to deal with a water barrier on a surface it will change the way we think about developing bio-inspired adhesives that are safe and already optimised to work in conditions similar to those in the human body, as well as marine paints that stop barnacles from sticking."

Barnacles have two larval stages -- the nauplius and the cyprid. The nauplius, is common to most crustacea and it swims freely once it hatches out of the egg, feeding in the plankton.

The final larval stage, however, is the cyprid, which is unique to barnacles. It investigates surfaces, selecting one that provides suitable conditions for growth. Once it has decided to attach permanently, the cyprid releases its glue and cements itself to the surface where it will live out the rest of its days.

"The key here is the technology. With these new tools we are able to study processes in living tissues, as they happen. We can get compositional and molecular information by other methods, but they don't explain the mechanism. There's no substitute for seeing things with your own eyes. " explains Dr Aldred.

"In the past, the strong lasers used for optically sectioning biological samples have typically killed the samples, but now technology allows us to study life processes exactly as they would happen in nature."

The research will also be of interest to the shipping industry. Biofouling -- the accumulation of marine life on ship's hulls -- increases drag on ships and costs the global industry an estimated $7.5 billion a year in wasted fuel.

Other implications include the movement of invasive species around the world and increased emission of greenhouse gases.


Story Source:

The above story is based on materials provided by Newcastle University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Neeraj V. Gohad, Nick Aldred, Christopher M. Hartshorn, Young Jong Lee, Marcus T. Cicerone, Beatriz Orihuela, Anthony S. Clare, Dan Rittschof, Andrew S. Mount. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5414

Cite This Page:

Newcastle University. "Nature's strongest glue comes unstuck." ScienceDaily. ScienceDaily, 18 July 2014. <www.sciencedaily.com/releases/2014/07/140718095418.htm>.
Newcastle University. (2014, July 18). Nature's strongest glue comes unstuck. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/07/140718095418.htm
Newcastle University. "Nature's strongest glue comes unstuck." ScienceDaily. www.sciencedaily.com/releases/2014/07/140718095418.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins