Featured Research

from universities, journals, and other organizations

Printing the metals of the future

Date:
July 28, 2014
Source:
NASA/Jet Propulsion Laboratory
Summary:
3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need custom parts that traditional manufacturing techniques and standard 3-D printers can't create, because they need to have the properties of multiple metals. Now, researchers at NASA's Jet Propulsion Laboratory in Pasadena, California, are implementing a printing process that transitions from one metal or alloy to another in a single object.

Scientists make a rocket nozzle using a new 3-D printing technique that allows for multiple metallic properties in the same object.
Credit: NASA-JPL/Caltech

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need custom parts that traditional manufacturing techniques and standard 3-D printers can't create, because they need to have the properties of multiple metals. Now, researchers at NASA's Jet Propulsion Laboratory in Pasadena, California, are implementing a printing process that transitions from one metal or alloy to another in a single object.

"You can have a continuous transition from alloy to alloy to alloy, and you can study a wide range of potential alloys," said R. Peter Dillon, a technologist at JPL. "We think it's going to change materials research in the future."

Although gradient alloys have been created in the past in research and development settings, this is the first time these composite materials have been used in making objects, such as a mount for a mirror, said John Paul Borgonia, a JPL mechanical engineer.

Why would you need to make a machine part like this? Say you want a metal object where you would like the ends to have different properties. One side could have a high melting temperature and the other a low density, or one side could be magnetic and the other not. Of course, you could separately make both halves of the object from their respective metals and then weld them together. But the weld itself may be brittle, so that your new object might fall apart under stress. That's not a good idea if you are constructing an interplanetary spacecraft, for example, which cannot be fixed once it is deployed.

JPL scientists have been developing a technique to address this problem since 2010. An effort to improve the methods of combining parts made of different materials in NASA's Mars Science Laboratory mission, which safely landed the Curiosity rover on the Red Planet in 2012, inspired a project to 3-D print components with multiple alloy compositions.

Researchers from JPL, the California Institute of Technology, Pasadena, and Pennsylvania State University, University Park, joined forces to tackle the issue. The result has implications for space travel and machinery on our own planet.

"We're taking a standard 3-D printing process and combining the ability to change the metal powder that the part is being built with on the fly," said Douglas Hofmann, a researcher in material science and metallurgy at JPL, and visiting associate at Caltech. "You can constantly be changing the composition of the material."

In their new technique, Hofmann and his colleagues deposit layers of metal on a rotating rod, thus transitioning metals from the inside out, rather than adding layers from bottom to top, as in the more traditional 3-D printing technique. A laser melts metal powder to create the layers.

Future space missions may incorporate parts made with this technique. The auto industry and the commercial aerospace industry may also find it useful, Hofmann said.

A report on this work was published in Scientific Reports on June 19. Coauthors include Douglas Hofmann; Scott Roberts, Joanna Kolodziejska and Andrew A. Shapiro from Caltech and JPL; R. Peter Dillon, Jong-ook Suh, and John-Paul Borgonia from JPL; and Richard Otis and Zi-Kui Liu from Pennsylvania State University. The work was funded by NASA. Caltech manages JPL for NASA.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Printing the metals of the future." ScienceDaily. ScienceDaily, 28 July 2014. <www.sciencedaily.com/releases/2014/07/140728192056.htm>.
NASA/Jet Propulsion Laboratory. (2014, July 28). Printing the metals of the future. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/07/140728192056.htm
NASA/Jet Propulsion Laboratory. "Printing the metals of the future." ScienceDaily. www.sciencedaily.com/releases/2014/07/140728192056.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins