Featured Research

from universities, journals, and other organizations

Mapping the optimal route between two quantum states

Date:
July 30, 2014
Source:
University of Rochester
Summary:
As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. Scientists have now shown that it is possible to track these quantum trajectories and compare them to a recently developed theory for predicting the most likely path a system will take between two states.

Measurement data showing the comparison with the 'most likely' path (in red) between initial and final quantum states (black dots). The measurements are shown on a representation referred to as a Bloch sphere.
Credit: Areeya Chantasri

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal or "most likely" path, but it is not as easy to predict the path or track it experimentally as a straight-line between two points would be in our everyday, classical world.

Related Articles


In a new paper featured this week on the cover of Nature, scientists from the University of Rochester, University of California at Berkeley and Washington University in St. Louis have shown that it is possible to track these quantum trajectories and compare them to a recently developed theory for predicting the most likely path a system will take between two states.

Andrew N. Jordan, professor of physics at the University of Rochester and one of the authors of the paper, and his group had developed this new theory in an earlier paper. The results published this week show good agreement between theory and experiment.

For their experiment, the Berkeley and Washington University teams devised a superconducting qubit with exceptional coherence properties, permitting it to remain in a quantum superposition during the continuous monitoring. The experiment actually exploited the fact that any measurement will perturb a quantum system. This means that the optimal path will come about as a result of the continuous measurement and how the system is being driven from one quantum state to another.

Kater Murch, co-author and assistant professor at Washington University in St. Louis, explained that a key part of the experiment was being able to measure each of these trajectories while the system was changing, something that had not been possible until now.

Jordan compares the experiment to watching butterflies make their way one by one from a cage to nearby trees. "Each butterfly's path is like a single run of the experiment," said Jordan. "They are all starting from the same cage, the initial state, and ending in one of the trees, each being a different end state." By watching the quantum equivalent of a million butterflies make the journey from cage to tree, the researchers were in effect able to predict the most likely path a butterfly took by observing which tree it landed on (known as post-selection in quantum physics measurements), despite the presence of a wind, or any disturbance that affects how it flies (which is similar to the effect measuring has on the system).

"The experiment demonstrates that for any choice of final quantum state, the most likely or 'optimal path' connecting them in a given time can be found and predicted," said Jordan. "This verifies the theory and opens the way for active quantum control techniques." He explained that only if you know the most likely path is it possible to set up the system to be in the desired state at a specific time.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W. Murch, I. Siddiqi. Mapping the optimal route between two quantum states. Nature, 2014; 511 (7511): 570 DOI: 10.1038/nature13559

Cite This Page:

University of Rochester. "Mapping the optimal route between two quantum states." ScienceDaily. ScienceDaily, 30 July 2014. <www.sciencedaily.com/releases/2014/07/140730132437.htm>.
University of Rochester. (2014, July 30). Mapping the optimal route between two quantum states. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2014/07/140730132437.htm
University of Rochester. "Mapping the optimal route between two quantum states." ScienceDaily. www.sciencedaily.com/releases/2014/07/140730132437.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

China's "Great Firewall" Frustrates Internet Users

China's "Great Firewall" Frustrates Internet Users

Reuters - News Video Online (Jan. 31, 2015) — The Chinese government moves to tighten regulations for virtual private network (VPN) services that are used to access websites and services normally blocked in China. That&apos;s affected many internet users in the country. Yiming Woo reports. Video provided by Reuters
Powered by NewsLook.com
Google Forced To Obey Law, Changes U.K. Privacy Policy

Google Forced To Obey Law, Changes U.K. Privacy Policy

Newsy (Jan. 30, 2015) — Google has agreed to make its privacy policy more transparent in compliance with a U.K. law. Video provided by Newsy
Powered by NewsLook.com
Newsweek's Tech Sexism Story: More Than Just A Cover

Newsweek's Tech Sexism Story: More Than Just A Cover

Newsy (Jan. 29, 2015) — Some objected to the art for Newsweek&apos;s cover story "What Silicon Valley Thinks of Women," but it&apos;s achieved one mission: getting people talking. Video provided by Newsy
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Finding Quantum 'lines of Desire': Physicists Track Quantum System's Wanderings Through Quantum State Space

July 30, 2014 — What paths do quantum particles, such as atoms or photons, follow through quantum state space? Scientists have used an "artificial atom" to continuously and repeatedly record the paths ... read more

Watching Schrodinger's Cat Die (or Come to Life)

July 30, 2014 — Quantum mechanics holds that a system can be in more than one state at a time, only collapsing into a definite state when someone measures it. A cat is both dead and alive until someone opens the ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins