Featured Research

from universities, journals, and other organizations

Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis

Date:
July 31, 2014
Source:
Whitehead Institute for Biomedical Research
Summary:
Long associated with enabling the proliferation of cancer cells, the ancient cellular survival response regulated by Heat-Shock Factor 1 (HSF1) can also turn neighboring cells in their environment into co-conspirators that support malignant progression and metastasis. This study has implications for the diagnosis, prognosis, and management of cancer patients.

Long associated with enabling the proliferation of cancer cells, the ancient cellular survival response regulated by Heat-Shock Factor 1 (HSF1) can also turn neighboring cells in their environment into co-conspirators that support malignant progression and metastasis.

Related Articles


The finding, reported by Whitehead Institute scientists this week in the journal Cell, lends new insights into tumor biology with significant implications for the diagnosis, prognosis, and management of cancer patients.

Over the past several years, researchers in the lab of Whitehead Member Susan Lindquist have been investigating the role the transcription factor HSF1 plays in supporting malignancy. In normal cells, stressful conditions, including those caused by heat, hypoxia, and toxins activate HSF1, which serves to maintain protein homeostasis and helps the cells endure tough times. Cancer cells, however, are capable of hijacking this heat-shock response to their own benefit. Two years ago, Lindquist's lab implicated HSF1 in this corruption, showing that it activates a set of genes in cancer cells quite distinct from those up-regulated in normal cells during heat-shock.

Building upon that research, the lab has now discovered that HSF1 operates not only on the cancer cells in a tumor, but also on the cells of the tumor microenvironment, or stroma. Here HSF1 drives a transcriptional program distinct from that operating in adjacent cancer cells. HSF1 activation in both cancer cells and stromal cells is a powerful, complementary combination that fuels malignant processes.

"This is actually a beautiful example of evolution," says Ruth Scherz-Shouval, a postdoctoral scientist in the Lindquist lab and first author of the Cell paper. "It's recognizing that the tumor is like an organism that adheres to evolutionary principles. HSF1 has been highly conserved over time, supporting the survival of organisms ranging from yeast to human, so it makes sense that it is co-opted here. Both cancer cells and the microenvironment are sensing changes in the tumor and responding, signaling to one another to help the "organism," albeit to the detriment of the host. These are different programs, but they're both controlled by HSF1 and serve the same purpose."

In a series of experiments, Scherz-Shouval and colleagues found clear evidence of HSF1 activation in stromal cells known as cancer-associated fibroblasts, or CAFs, in a variety of human tumors, including breast, lung, skin, esophageal, colon, and prostate cancers. Moreover, they discovered that not only does HSF1 activation in CAFs up-regulate genes supporting malignancy, it also suppresses genes that would ordinarily trigger a protective, anti-cancer immune response in surrounding tissue. Although such a synergistic dynamic may seem daunting to overcome, it may in fact actually present a real opportunity for therapeutic intervention.

"It's important to find HSF1 operating this way in the stroma," notes Scherz-Shouval. "The tumor microenviroment tends to be more genetically stable and less prone to mutation, suggesting that even if cancer cells could mutate to evade therapeutic disruption of HSF1, supportive cells in the stroma could still be susceptible."

"Although it's thought to be quite difficult to drug a transcription factor like HSF1 directly, the role of HSF1 suggests that we might be able to treat cancer more effectively by modifying the underlying tumor biology," says Luke Whitesell, an oncologist, Lindquist lab senior scientist, and a corresponding author on the latest Cell paper. "Targeting the dual role of HSF1 has the potential to change how a cancer responds to therapeutic interventions, perhaps making it less able to cope with other therapies."

Another significant finding from the research is the potential to use stromal HSF1 activation as a diagnostic and prognostic biomarker. In analysis of tumor samples from breast cancer patients, the scientists found that HSF1 activation in the stroma was associated with poor patient outcomes, including reduced disease-free survival and overall survival. Further, the researchers also found that stromal HSF1 activation in samples from patients with early-stage non-small cell lung cancer was also associated with poor outcomes.

Although the scientists emphasize that the numbers of breast and lung cancer samples studied were small, the correlation between stromal HSF1 activation and poor patient outcomes was strong enough in each case to warrant further clinical investigation. They add that an HSF1-based biomarker could help predict which patient tumors, early-stage lung in particular, are most likely to progress and might benefit from more aggressive therapy. Conversely, such information could prevent patients with less aggressive cancers from suffering the ill effects of "over-treatment" with highly toxic therapies.

This work is supported by the National Institutes of Health and the National Cancer Institute (grant K08 NS064168 and K99CA175293), the Howard Hughes Medical Institute, the V Foundation, the Komen Foundation, the Human Frontiers Science Program, the Fulbright Program, the Jared Branfman Sunflowers for Life Fund, the Israel National Postdoctoral Award Program for Women in Science, and the J & J COSAT focused funding program.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. The original article was written by Matt Fearer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruth Scherz-Shouval, Sandro Santagata, MarcL. Mendillo, LynetteM. Sholl, Irit Ben-Aharon, AndrewH. Beck, Dora Dias-Santagata, Martina Koeva, SalomonM. Stemmer, Luke Whitesell, Susan Lindquist. The Reprogramming of Tumor Stroma by HSF1 Is a Potent Enabler of Malignancy. Cell, 2014; 158 (3): 564 DOI: 10.1016/j.cell.2014.05.045

Cite This Page:

Whitehead Institute for Biomedical Research. "Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis." ScienceDaily. ScienceDaily, 31 July 2014. <www.sciencedaily.com/releases/2014/07/140731145502.htm>.
Whitehead Institute for Biomedical Research. (2014, July 31). Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/07/140731145502.htm
Whitehead Institute for Biomedical Research. "Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis." ScienceDaily. www.sciencedaily.com/releases/2014/07/140731145502.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins