Featured Research

from universities, journals, and other organizations

Crash-testing rivets for better reliability

Date:
August 7, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Rivets have to reliably hold the chassis of an automobile together -- even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced model now delivers realistic projections.

A punch-riveted joint fails under bending load: the red areas were particularly seriously deformed.
Credit: Fraunhofer IWM

Rivets have to reliably hold the chassis of an automobile together -- even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced model now delivers realistic projections.

Related Articles


Steel, aluminum, magnesium, fiber-reinforced plastics: cars are built from a wide array of materials today. These have to be connected with each other reliably. To wit: even if the joints become loose in a crash, passengers must face no greater risk of injury than before. Manufacturers use their welding equipment for cars made entirely of steel. However, if you want to combine steel together with aluminum, for example, or steel with plastic materials, then conventional welding techniques are entirely unsuited, plain and simple. Automakers therefore resort to mechanical connections instead, such as rivets.

Very often, connections are the weak points: in a crash, they are typically the first thing to fail. And since a car has about 3,000 to 5,000 joints, manufacturers strive to minimize this risk. This is why automakers use simulations to verify if the various connection points sustain these stresses in an accident. Yet how stable are they in the first place? In many cases, the calculations can clearly predict how the individual joining points will perform, but not for every type of strain, though. If the joined components become bent (experts refer to this as a "flexural load" or "bending load"), then the simulations are quite often off the mark. For example, such computations could ascribe a greater load capacity than the rivets can actually bear under real emergency conditions. This uncertainty is something automakers greatly wish to eliminate.

Realistic projections through a new model

Researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg -- working together with their colleagues from the Laboratory for Material and Joining Technology LWF in Paderborn, and the Association for the Advancement of Applied Computer Science GFaI in Berlin -- have essentially eliminated this drawback now, at least in the simulations."We have further engineered a model that allows us to forecast rivet performance more reliably -- both with slow and fast bending loads, as well as with pull and shear forces that emerge when the joined components become shifted, relative to each other," explains Dr. Silke Sommer, Group Manager at IWM. For this purpose, researchers produced individual "sample components" from a variety of materials, connected them with rivets, and then applied stress. They bent them in a variety of directions, and pulled them and pushed them at varying speeds. They then integrated the performance of the rivet points into the mathematical equations."These equations contain various parameters -- to account for the different materials and their densities, for instance," Sommer says. The researchers at IWM and LWF studied about 15 different combinations of materials. Based on these data, their colleagues at GFaI prepared projections for other similar material and density combinations.

If car manufacturers now want to calculate how the rivets perform in the event of an accident, then as a rule, they simulate the crash first. What forces appear at which points on the car? If these data are known, then the engineers can determine -- for each rivet -- whether it could withstand the strains at precisely this point or in that position. The model is finished and automakers can already use it, and therefore make their cars even safer than before.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Crash-testing rivets for better reliability." ScienceDaily. ScienceDaily, 7 August 2014. <www.sciencedaily.com/releases/2014/08/140807105041.htm>.
Fraunhofer-Gesellschaft. (2014, August 7). Crash-testing rivets for better reliability. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/08/140807105041.htm
Fraunhofer-Gesellschaft. "Crash-testing rivets for better reliability." ScienceDaily. www.sciencedaily.com/releases/2014/08/140807105041.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins