Featured Research

from universities, journals, and other organizations

Laser makes microscopes way cooler, incredibly sensitive

Date:
August 15, 2014
Source:
Australian National University
Summary:
Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus. The technique hinges on using laser beams to cool a nanowire probe to -265 degrees Celsius. "The level of sensitivity achieved after cooling is accurate enough for us to sense the weight of a large virus that is 100 billion times lighter than a mosquito," said one researcher.

Ph.D. students Giovanni Guccione (left) and Harry Slatyer examine their gold coated nanowire probe in the Quantum Optics Laboratory at the Australian National University.
Credit: ANU Quantum Optics Group

Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

Related Articles


The technique, developed by researchers at The Australian National University (ANU), hinges on using laser beams to cool a nanowire probe to minus 265 degrees Celsius.

"The level of sensitivity achieved after cooling is accurate enough for us to sense the weight of a large virus that is 100 billion times lighter than a mosquito," said Dr Ben Buchler from the ANU Research School of Physics and Engineering.

The development could be used to improve the resolution of atomic-force microscopes, which are the state-of-the-art tool for measuring nanoscopic structures and the tiny forces between molecules.

Atomic force microscopes achieve extraordinarily sensitivity measurements of microscopic features by scanning a wire probe over a surface.

However, the probes, around 500 times finer than a human hair, are prone to vibration.

"At room temperature the probe vibrates, just because it is warm, and this can make your measurements noisy," said Professor Ping Koy Lam, a co-author of the research that is published in Nature Communications.

"We can stop this motion by shining lasers at the probe," he said.

The force sensor used by the ANU team was a 200 nm-wide silver gallium nanowire coated with gold.

"The laser makes the probe warp and move due to heat. But we have learned to control this warping effect and were able to use the effect to counter the thermal vibration of the probe," said Giovanni Guccione, a PhD student on the team.

However, the probe cannot be used while the laser is on as the laser effect overwhelms the sensitive probe. So the laser has to be turned off and any measurements quickly made before the probe heats up within a few milliseconds. By making measurements over a number of cycles of heating and cooling, an accurate value can be found.

"We now understand this cooling effect really well," says PhD student Harry Slatyer. "With clever data processing we might be able to improve the sensitivity, and even eliminate the need for a cooling laser."


Story Source:

The above story is based on materials provided by Australian National University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mahdi Hosseini, Giovanni Guccione, Harry J. Slatyer, Ben C. Buchler, Ping Koy Lam. Multimode laser cooling and ultra-high sensitivity force sensing with nanowires. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5663

Cite This Page:

Australian National University. "Laser makes microscopes way cooler, incredibly sensitive." ScienceDaily. ScienceDaily, 15 August 2014. <www.sciencedaily.com/releases/2014/08/140815102328.htm>.
Australian National University. (2014, August 15). Laser makes microscopes way cooler, incredibly sensitive. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/08/140815102328.htm
Australian National University. "Laser makes microscopes way cooler, incredibly sensitive." ScienceDaily. www.sciencedaily.com/releases/2014/08/140815102328.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins