New! Sign up for our free email newsletter.
Science News
from research organizations

Laser makes microscopes way cooler, incredibly sensitive

Date:
August 15, 2014
Source:
Australian National University
Summary:
Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus. The technique hinges on using laser beams to cool a nanowire probe to -265 degrees Celsius. "The level of sensitivity achieved after cooling is accurate enough for us to sense the weight of a large virus that is 100 billion times lighter than a mosquito," said one researcher.
Share:
FULL STORY

Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

The technique, developed by researchers at The Australian National University (ANU), hinges on using laser beams to cool a nanowire probe to minus 265 degrees Celsius.

"The level of sensitivity achieved after cooling is accurate enough for us to sense the weight of a large virus that is 100 billion times lighter than a mosquito," said Dr Ben Buchler from the ANU Research School of Physics and Engineering.

The development could be used to improve the resolution of atomic-force microscopes, which are the state-of-the-art tool for measuring nanoscopic structures and the tiny forces between molecules.

Atomic force microscopes achieve extraordinarily sensitivity measurements of microscopic features by scanning a wire probe over a surface.

However, the probes, around 500 times finer than a human hair, are prone to vibration.

"At room temperature the probe vibrates, just because it is warm, and this can make your measurements noisy," said Professor Ping Koy Lam, a co-author of the research that is published in Nature Communications.

"We can stop this motion by shining lasers at the probe," he said.

The force sensor used by the ANU team was a 200 nm-wide silver gallium nanowire coated with gold.

"The laser makes the probe warp and move due to heat. But we have learned to control this warping effect and were able to use the effect to counter the thermal vibration of the probe," said Giovanni Guccione, a PhD student on the team.

However, the probe cannot be used while the laser is on as the laser effect overwhelms the sensitive probe. So the laser has to be turned off and any measurements quickly made before the probe heats up within a few milliseconds. By making measurements over a number of cycles of heating and cooling, an accurate value can be found.

"We now understand this cooling effect really well," says PhD student Harry Slatyer. "With clever data processing we might be able to improve the sensitivity, and even eliminate the need for a cooling laser."


Story Source:

Materials provided by Australian National University. Note: Content may be edited for style and length.


Journal Reference:

  1. Mahdi Hosseini, Giovanni Guccione, Harry J. Slatyer, Ben C. Buchler, Ping Koy Lam. Multimode laser cooling and ultra-high sensitivity force sensing with nanowires. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5663

Cite This Page:

Australian National University. "Laser makes microscopes way cooler, incredibly sensitive." ScienceDaily. ScienceDaily, 15 August 2014. <www.sciencedaily.com/releases/2014/08/140815102328.htm>.
Australian National University. (2014, August 15). Laser makes microscopes way cooler, incredibly sensitive. ScienceDaily. Retrieved May 4, 2024 from www.sciencedaily.com/releases/2014/08/140815102328.htm
Australian National University. "Laser makes microscopes way cooler, incredibly sensitive." ScienceDaily. www.sciencedaily.com/releases/2014/08/140815102328.htm (accessed May 4, 2024).

Explore More

from ScienceDaily

RELATED STORIES