Featured Research

from universities, journals, and other organizations

Testing the shelf-life of nuclear reactors

Date:
August 20, 2014
Source:
Elsevier
Summary:
Researchers have devised a quick way to test the structural materials used to build nuclear reactors.

Researchers have devised a quick way to test the structural materials used to build nuclear reactors, details reported in the journal Scripta Materialia.

Related Articles


Researchers at the University of Michigan, Ann Arbor, Los Alamos National Laboratory, Idaho National Laboratory, Idaho Falls and TerraPower based in Bellevue, Washington, have demonstrated the power of high-energy beams of charged particles (ions). The ions can rapidly and consistently damage samples of ferritic-martensitic steel, the material used in certain nuclear reactor components. The significance of the result is that the breakdown closely replicates that seen when high-energy neutrons from a nuclear reactor interact with the material -- damage accrues in a matter of days, rather than decades.

The structural components of advanced reactors such as the sodium fast reactor and the traveling wave nuclear reactor must be able to withstand the extreme levels of radioactivity from the fission reaction itself at temperatures well above 400 Celsius. Unfortunately, standard tests of such components are expensive, require increasingly rare test reactors and test periods that are impractical. Moreover, the samples themselves also become radioactive making subsequent studies and examination time consuming and expensive. Nevertheless, understanding how these structural components are affected by radiation at the microscopic level is critical to building long-lasting, robust and safe nuclear reactors.

To demonstrate the proof of principle with ion beams instead of conventional reaction irradiation, the team of researchers preloaded reactor components of ferritic-martensitic steel with atoms of helium gas, to simulate alpha particles. They irradiated the samples with an ion beam from a particle accelerator at 5 million electronvolts energy and a temperature of 460 degrees Celsius for several hours, and after which used transmission electron microscopy (TEM) to characterize the damage caused by the energetic ions penetrating the steel and observed microscopic holes (voids), dislocations and precipitates within the steel -- none of which were present before ion irradiation.

Comparing this ion-beam damage with that seen in actual components of the same batch of steel used in a sodium fast reactor during the period 1985-1992, it was found that the types of defects (as well as their sizes and numbers) caused by neutron bombardment from the nuclear reaction to be closely reproduced by that with the ion beam experiments.

Lead author Gary Was hopes that their research will help develop "a stronger understanding of how to use ion irradiation to emulate neutron irradiation to enable the rapid development of new materials for advanced reactors as principal sources of clean energy." With additional work, a rapid, standardized experimental procedure may be developed for the routine evaluation of materials, facilitating the creation of more resilient components for nuclear reactors of the not-so-distant future.


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett. Emulation of reactor irradiation damage using ion beams. Scripta Materialia, 2014; 88: 33 DOI: 10.1016/j.scriptamat.2014.06.003

Cite This Page:

Elsevier. "Testing the shelf-life of nuclear reactors." ScienceDaily. ScienceDaily, 20 August 2014. <www.sciencedaily.com/releases/2014/08/140820091603.htm>.
Elsevier. (2014, August 20). Testing the shelf-life of nuclear reactors. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2014/08/140820091603.htm
Elsevier. "Testing the shelf-life of nuclear reactors." ScienceDaily. www.sciencedaily.com/releases/2014/08/140820091603.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

At Least 15 Injured in a California Natural Gas Pipeline Explosion

At Least 15 Injured in a California Natural Gas Pipeline Explosion

Reuters - US Online Video (Apr. 18, 2015) At least 15 injred after natural gas transmission line ruptures in Fresno, California. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins