New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Schrödinger's cat

Schrödinger's cat is a seemingly paradoxical thought experiment devised by Erwin Schrödinger that attempts to illustrate the incompleteness of an early interpretation of quantum mechanics when going from subatomic to macroscopic systems. Schrödinger proposed his "cat" after debates with Albert Einstein over the Copenhagen interpretation, which Schrödinger defended, stating in essence that if a scenario existed where a cat could be so isolated from external interference (decoherence), the state of the cat can only be known as a superposition (combination) of possible rest states (eigenstates), because finding out (measuring the state) cannot be done without the observer interfering with the experiment — the measurement system (the observer) is entangled with the experiment.

The thought experiment serves to illustrate the strangeness of quantum mechanics and the mathematics necessary to describe quantum states. The idea of a particle existing in a superposition of possible states, while a fact of quantum mechanics, is a concept that does not scale to large systems (like cats), which are not indeterminably probabilistic in nature. Philosophically, these positions which emphasize either probability or determined outcomes are called (respectively) positivism and determinism.

Related Stories
 


Matter & Energy News

January 9, 2026

Scientists in South Korea have discovered a way to make all-solid-state batteries safer and more powerful using inexpensive materials. Instead of adding costly metals, they redesigned the battery’s internal structure to help lithium ions move ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
Researchers have built a new platform that produces ultrashort UV-C laser pulses and detects them at room temperature using atom-thin materials. The light flashes last just femtoseconds and can be ...
Scientists are learning to engineer light in rich, multidimensional ways that dramatically increase how much information a single photon can carry. This leap could make quantum communication more secure, quantum computers more efficient, and sensors ...
A new chip-based quantum memory uses nanoprinted “light cages” to trap light inside atomic vapor, enabling fast, reliable storage of quantum information. The structures can be fabricated with extreme precision and filled with atoms in days ...
Scientists have found a way to see ultrafast molecular interactions inside liquids using an extreme laser technique once thought impossible for fluids. When they mixed nearly identical chemicals, one combination behaved strangely—producing less ...
Seeing plastic trash while hiking inspired a Rutgers chemist to rethink why synthetic plastics last forever while natural polymers don’t. By mimicking tiny structural features used in DNA and proteins, researchers designed plastics that remain ...
Scientists have developed molecular devices that can switch roles, behaving as memory, logic, or learning elements within the same structure. The breakthrough comes from precise chemical design that ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
A new advance in bromine-based flow batteries could remove one of the biggest obstacles to long-lasting, affordable energy storage. Scientists developed a way to chemically capture corrosive bromine during battery operation, keeping its ...
A new catalyst design could transform how acetaldehyde is made from renewable bioethanol. Researchers found that a carefully balanced mix of gold, manganese, and copper creates a powerful synergy that boosts efficiency while lowering operating ...

Latest Headlines

updated 12:56 pm ET